Poster: Measurement of directed and elliptic flow of ϕ meson in $\sqrt{s_{NN}} = 3.0$, 4.5 GeV Au+Au collisions at the STAR detector

Ding Chen, Yang Wu, Richard Seto

University of California, Riverside, USA

Abstract

The ϕ vector mesons have much smaller hadronic cross section which makes them less influenced at late-stage interactions than other hadrons [1–4]. Thus their anisotropies like the elliptic flow should be small if the system is always in a hadronic phase. This, in turn, makes ϕ meson v_2 especially sensitive to the energy where quark-gluon plasma turns off. Measurements from STAR at 7.7 and 11.5 GeV have seen ϕv_2 at highest transverse momentum close to zero [5] and ϕ directed flow, v_1 , is consistent with zero [6] with conclusions limited by statistics. On the other hand, the closeness of ϕ mass to the nucleon and its $s \bar{s}$ constituent quarks makes them suitable to test the deviation of net-nucleon and net-meson v_1 at energies below 7.7 GeV where could be a breakdown of the assumption that s and \bar{s} quarks have the same flow [6]. Measurements of directed and elliptic flow of ϕ vector meson at 3.0 and 4.5 GeV Au+Au collisions at STAR will be presented and compared with RHIC Beam Energy Scan results from 7.7-39 GeV. Measurements will have better precision with increased particle acceptance and 100 more statistics at 3.0 GeV compared to 4.5 GeV from the STAR fixed-target run. Physics implication related to the search for quark-gluon plasma turn-off will also be discussed.

References

- Y. Cheng, F. Liu, Z. Liu, K. Schweda, and N. Xu. Transverse expansion in ¹⁹⁷Au+¹⁹⁷Au collisions at rhic. *Phys. Rev. C*, 68:034910, Sep 2003.
- [2] Asher Shor. φ-meson production as a probe of the quark-gluon plasma. Phys. Rev. Lett., 54:1122– 1125, Mar 1985.
- [3] Sibirtsev, A., Hammer, H. -W., Meißner, U. -G., and Thomas, A. W. on photoproduction from nuclei. Eur. Phys. J. A, 29(2):209–220, 2006.
- [4] H. van Hecke, H. Sorge, and N. Xu. Evidence of early multistrange hadron freeze-out in high energy nuclear collisions. *Phys. Rev. Lett.*, 81:5764–5767, Dec 1998.
- [5] L. Adamczyk and et al. Elliptic flow of identified hadrons in Au + Au collisions at $\sqrt{s_{NN}} = 7.7 62.4 \ GeV$. Phys. Rev. C, 88:014902, Jul 2013.
- [6] L. Adamczyk and et al. Beam-energy dependence of directed flow of Λ , $\overline{\Lambda}$, K^{\pm} , K_s^0 , and ϕ in Au + Au collisions. *Phys. Rev. Lett.*, 120:062301, Feb 2018.