Study of nonflow baseline for the CME signal via two-particle $(\Delta\eta,\Delta\phi)$ correlations in isobar collisions at STAR - a poster for Quark Matter 2022 Yicheng Feng (for the STAR collaboration) Purdue University

April 6, 2022

Abstract

We study nonflow contributions in isobar data and arrive at a new background estimate for CME.

Supported in part by the **U.S. DEPARTMENT OF** ENERGY

Yicheng Feng (for the STAR collaboration)

Office of Science

Study of nonflow baseline for the CME signal via two-particle $(\Delta \eta, \Delta \phi)$ correlations in isobar collisions at STAR

 \vec{p}

PURDUE

1 / 5

3. Nonflow contribution to isobar baseline

▶ The naive baseline of unity would be correct if there was no nonflow. Nonflow correlations will cause the baseline to deviate from unity. \blacktriangleright We use the letter " ϵ " to denote the nonflow components.

n
$$v_2^*$$
: $v_2^{*2} = v_2^2 + v_{2,nf}^2$, $\epsilon_{nf} \equiv v_{2,nf}^2 / v_2^2$.

 \triangleright C₃ is composed of flow-induced background (major), 3p nonflow correlations (minor), and possible CME (not written out) [Y. Feng, J. Zhao, H. Li, H. j. Xu and F. Wang, Phys. Rev. C 105, 024913 (2022)]

$$C_{3} = \frac{C_{2p}N_{2p}}{N^{2}}v_{2,2p}v_{2} + \frac{C_{3p}N_{3p}}{2N^{3}} = \frac{v_{2}^{2}\epsilon_{2}}{N} + \frac{\epsilon_{3}}{N^{2}},$$

The CME-sensitive observable $\Delta \gamma$ is $\Delta \gamma = C_3/v_2^*$, and then $\frac{N\Delta\gamma}{v_2^*} = \frac{NC_3}{v_2^{*2}} = \frac{\epsilon_2}{1+\epsilon_{\mathsf{nf}}} + \frac{\epsilon_3}{Nv_2^2(1+\epsilon_{\mathsf{nf}})} = \frac{\epsilon_2}{1+\epsilon_{\mathsf{nf}}} \left[1 + \frac{\epsilon_3/\epsilon_2}{Nv_2^2}\right]$ • 2-particle (2p) nonflow (e.g., resonance, ...) $C_{2p} \equiv \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{2p}) \rangle$. • 3-particle (3p) nonflow (e.g., jets, ...) $C_{3p} \equiv \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_c) \rangle$. • $N \approx N_+ \approx N_-$ is POI multiplicity; $N_{2p,3p}$ is 2p (3p) nonflow pair (triplet) multiplicity. (POI stands for particle of interest.)

• $\epsilon_2 \equiv C_{2p} N_{2p} v_{2,2p} / (Nv_2)$ is the 2p correlation w.r.t. the 2p cluster azimuth and coupled with 2p cluster elliptic flow.

• $\epsilon_3 \equiv C_{3p} N_{3p}/(2N)$ is the 3p correlation within the correlated triplet.

io: (where notation
$$\Delta X = X^{\mathsf{Ru}} - X^{\mathsf{Zr}}$$
)
 $\frac{v_2^*)^{\mathsf{Ru}}}{v_2^*)^{\mathsf{Zr}}} \equiv \frac{(NC_3/v_2^{*2})^{\mathsf{Ru}}}{(NC_3/v_2^{*2})^{\mathsf{Zr}}} \approx \frac{\epsilon_2^{\mathsf{Ru}}}{\epsilon_2^{\mathsf{Zr}}} \cdot \frac{(1+\epsilon_{\mathsf{nf}})^{\mathsf{Zr}}}{(1+\epsilon_{\mathsf{nf}})^{\mathsf{Ru}}} \cdot \frac{[1+\epsilon_3/\epsilon_3/\epsilon_2/\epsilon_2]}{[1+\epsilon_3/\epsilon_3/\epsilon_2/\epsilon_2]} \cdot \frac{\Delta\epsilon_3}{\epsilon_3} - \frac{\Delta\epsilon_2}{\epsilon_2} - \frac{\Delta N}{N} - \frac{\Delta\epsilon_3}{\epsilon_3} \cdot \frac{\Delta\epsilon_4}{\epsilon_2} \cdot \frac{\Delta N}{N} - \frac{\Delta\epsilon_4}{\epsilon_4} \cdot \frac{\epsilon_3/\epsilon_2/(Nv_2^2)}{\epsilon_4} \cdot \frac{\epsilon_4}{\mathsf{N}} \cdot$

Study of nonflow baseline for the CME signal via two-particle $(\Delta \eta, \Delta \phi)$ correlations in isobar collisions at STAR

 $/\epsilon_2/(Nv_2^2)]^{\sf RL}$ $(\kappa_2/(Nv_2^2))^{\mathsf{Z}}$

2 / 5

$$_{\rm NN}(\Delta\phi) + A_3 G_{{\rm NS},D}(\Delta\eta) G_{{\rm NS},D}(\Delta\phi)$$

 $_{\rm G}(\Delta\eta)$

Ru	Zr+Zr
= 0.011	351.988 ± 0.009
0.000003	0.002867 ± 0.000003
0.0000010	0.0034930 ± 0.0000010
0.0000007	0.0036088 ± 0.0000007
0.000003	0.000742 ± 0.000003
0.10)%	$(25.88 \pm 0.09)\%$

 $\Delta v_2^2 / v_2^2 = \Delta V_2 / V_2 = (3.7 \pm 0.1 \mp 0.3)\%.$ b) Estimate of $\Delta \epsilon_2/\epsilon_2$ CME) [STAR, Phys. Rev. C 105, 014901 (2022)] Assuming $\Delta \epsilon_2 / \epsilon_2 =$ c) Estimate of $\Delta \epsilon_3 / \epsilon_3$ ► We use HIJING simulation to obtain $\epsilon_3 \approx (1.84 \pm 0.04)\%$, and $\Delta \epsilon_3 / \epsilon_3 = (0.5 \pm 2.7)\%$ (~ 8.6×10^8 events for each isobar). \blacktriangleright We assume 50% systematic uncertainty for ϵ_3 ($\pm 0.92\%$), and assume $\Delta \epsilon_3 / \epsilon_3$ is presently dominated by statistics. HIJING without jet quenching gives $\epsilon_3 = (2.24 \pm 0.05)\%$, differing from the default by 22%, suggesting 50%systematics a safe guesstimate.

Study of nonflow baseline for the CME signal via two-particle $(\Delta \eta, \Delta \phi)$ correlations in isobar collisions at STAR

 \blacktriangleright If the nearside wide Gaussian (A_1 term) is counted into "true" flow, $(v_2^2)^{\mathsf{Ru}} = 0.003489, (v_2^2)^{\mathsf{Zr}} = 0.003381, \epsilon_{\mathsf{nf}}^{\mathsf{Ru}} = 6.50\%, \epsilon_{\mathsf{nf}}^{\mathsf{Zr}} = 6.73\%.$ Half of this difference from the default is counted as systematic uncertainty. $\Delta \epsilon_{\rm nf} = (-0.82 \pm 0.13 \mp 0.30)\%, \ -\Delta \epsilon_{\rm nf}/(1 + \epsilon_{\rm nf}) = (0.65 \pm 0.11 \pm 0.22)\%.$

 ϵ_2 can be obtained from ZDC measurement (no nonflow, assuming negligible)

 $\epsilon_2 = \frac{N\Delta\gamma\{\text{ZDC}\}}{v_2\{\text{ZDC}\}} \approx 0.57 \pm 0.04 \pm 0.02 \text{ (tracking efficiency } \sim 80\%) \text{ and}$ $\Delta \epsilon_2 / \epsilon_2 \approx (2.3 \pm 9.2)\%$. The $\Delta \epsilon_2$ precision is too poor.

▶ AMPT simulation w.r.t. reaction plane gives $\Delta \epsilon_2 / \epsilon_2 \approx (3.5 \pm 1.4)\%$. • However, the pair multiplicity difference $r \equiv (N_{\rm OS} - N_{\rm SS})/N_{\rm OS}$ is relatively precisely measured [STAR, Phys. Rev. C 105, 014901 (2022)].

$$C_{2\mathsf{p}}^{\mathsf{Ru}} = C_{2\mathsf{p}}^{\mathsf{Zr}}$$
, then $\epsilon_2 \propto Nr$, and

$$\Delta r/r + \Delta N/N = (-2.95 \pm 0.08)\% + 4.4\% = (1.4\%)$$

 $45 \pm 0.08)\%$.

3 / 5

5. Estimated Background Level For Isobar $N\Delta\gamma/v_2$ Ratio								
		* Except this column, all numbers on this poster refer t						
	Quantity		Method	Systematic uncertainty	Full-event value	Sub-event		
	Multiplicity $\Delta N/N$	Measured		Negligible	4.4%	4.4		
	Flow $\Delta v_2^2/v_2^2$	Measured	Nonflow subtracted as per below	From nonflow syst.	$\Delta v_2^2 / v_2^2 = (3.7 \pm 0.1 \pm 0.3)\%$	$\Delta v_2^2/v_2^2 = (3.7 \pm$		
	v_2 nonflow	Measured	$(\Delta\eta,\Delta\phi)$ correlations, experimentally measured	Nonflow $\sim 25\%$ (full event), dominated by NS wide Gaus; consider $\pm 1/2$ WG as syst. uncertainty	$-\Delta \epsilon_{nf} = (0.82 \pm 0.13 \pm 0.30)\%$ $\frac{-\Delta \epsilon_{nf}}{1+\epsilon_{nf}} = (0.65 \pm 0.11 \pm 0.22)\%$	$-\Delta \epsilon_{\rm nf} = (0.59 \pm \frac{-\Delta \epsilon_{\rm nf}}{1+\epsilon_{\rm nf}} = (0.48 \pm 0.000)$		
	v_2 -induced bkgd: $\epsilon_2 = N \Delta \gamma / v_2$	Measured	Measured by ZDC (assume negligible CME)	Small	$\epsilon_2 = (0.57 \pm 0.04 \pm 0.02)\%$	$\epsilon_2 = (0.79 \pm 0.125)$		
<i>v</i> ₂ -	induced bkgd difference: $\frac{\Delta \epsilon_2}{\epsilon_2} \sim \frac{\Delta (N_{2p}/N)}{(N_{2p}/N)} = \frac{\Delta (rN)}{rN}$	Measured	$\begin{vmatrix} r = (N_{\rm OS} - N_{\rm SS})/N_{\rm OS} \\ \text{experimentally measured} \end{vmatrix}$	Negligible	$\frac{\Delta\epsilon_2}{\epsilon_2} = (1.45 \pm 0.08)\%$	$\frac{\Delta\epsilon_2}{\epsilon_2} = (1.45)$		
	3p contribution to C_3 : $\epsilon_3 = C_{3p} N_{3p} / (2N)$	Model estimate	HIJING simulations quenching-on	Quenching-on and off difference $\sim 20\%$. Take $\pm 50\%$ as syst. uncertainty	$\epsilon_3 = (1.84 \pm 0.04 \pm 0.92)\%$	$\epsilon_3 = (1.91 \pm 0.)$		
3 p	contribution difference:	Model	HIJING simulation	Assumed negligible relative	$\frac{\Delta\epsilon_3}{\epsilon_3} = (0.5 \pm 2.7)\%$	$\frac{\Delta\epsilon_3}{\epsilon_3} = (-1.8)$		
	$\Delta \epsilon_3 / \epsilon_3$	estimate	quenching-on	to the large stat. uncertainty	$\frac{\epsilon_3/\epsilon_2}{Nv_2^2} = 0.104 \pm 0.008 \pm 0.053$	$\frac{\epsilon_3/\epsilon_2}{Nv_2^2} = 0.079 \pm 0$		
background estimate					$1.013 \pm 0.003 \pm 0.005$	1.011 ± 0.00		
The numerical value of Eq. 3 (for full-event method as example) can thus be estimated as follows:								
$\frac{(N\Delta\gamma/v_2^*)^{Ru}}{(N\Delta\gamma/v_2^*)^{Zr}} \approx 1 + (1.45 \pm 0.08)\% + (0.65 \pm 0.11 \pm 0.22)\% + (0.094 \pm 0.007 \pm 0.048)[(0.5 \pm 2.7)\% - (1.45 \pm 0.08)\% - 4.4\% - (3.7 \pm 0.11) \pm (0.22)\% - (0.85 \pm 0.26 \pm 0.44)\% = 1.013 \pm 0.003 \pm 0.005$								

Study of nonflow baseline for the CME signal via two-particle $(\Delta\eta,\Delta\phi)$ correlations in isobar collisions at STAR

The STAR Collaboration,

https://drupal.star.bnl.gov/STAR/presentations

Study of nonflow baseline for the CME signal via two-particle $(\Delta \eta, \Delta \phi)$ correlations in isobar collisions at STAR

