\documentclass[a4paper, 11pt, conference]{letter} %\addtolength{\voffset}{-0.5in} %\addtolength{\hoffset}{-0.3in} %\addtolength{\textheight}{2cm} \usepackage{lineno, blindtext, indentfirst} \begin{document} \begin{center} %{\large\bf{Production of Light Nuclei in Au+Au Collisions at $\sqrt{s_{\mathrm{NN}}}$ = 3, 14.6, 19.6 GeV and in Ru+Ru and Zr+Zr Collisions at $\sqrt{s_{\mathrm{NN}}}$ = 200 GeV measured by RHIC-STAR}} {\large\bf{Production of Light Nuclei in Heavy-ion Collisions Measured by RHIC-STAR}} Hui Liu (for the STAR Collaboration) Central China Normal University \end{center} \begin{linenumbers} \setlength{\parindent}{2em} Light nuclei production is predicted to be sensitive to local baryon density fluctuations and can be used to probe the QCD phase structure. %and the properties of medium created in heavy-ion collisions. Since 2018, the STAR experiment has collected high statistics data in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 3 GeV (BES-II fixed-target mode), 14.6, 19.6 GeV (BES-II collider mode) and isobaric collisions (Ru+Ru and Zr+Zr) at $\sqrt{s_{\mathrm{NN}}}$ = 200 GeV. Those datasets allow us to access the QCD phase structure over a broad range of baryon density ($\mu_{B} : 20 \sim$ 750 MeV). In this talk, we will present the first measurement of centrality, transverse momentum, and rapidity dependences of proton ($p$), deuteron ($d$), triton ($t$), $^{3}\mathrm{He}$, and $^{4}\mathrm{He}$ production in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 3 GeV, $p$, $d$, $^{3}\mathrm{He}$ at $\sqrt{s_{\mathrm{NN}}}$ = 14.6, 19.6 GeV, and $p$, $d$, $t$, $^{3}\mathrm{He}$ in Ru+Ru and Zr+Zr collisions at $\sqrt{s_{\mathrm{NN}}}$ = 200 GeV. The kinetic freeze-out parameters ($T_{kin}$ and $\langle \beta_{T} \rangle$) versus collision centrality and particle rapidity will be presented and compared with those of light hadrons ($\pi$, $K$, $p$). \end{linenumbers} \end{document}