Global spin alignment and elliptic flow of ϕ and K^{*0} vector mesons in AuAu collisions in BES-II

Gavin Wilks, Xu Sun, Zhenyu Ye (for the STAR collaboration)

University of Illinois at Chicago, Chicago IL, USA

4 Abstract

3

Global spin alignment in heavy-ion collisions is the result of particles' spin preferentially 5 aligning with the large orbital angular momentum generated at the center of these systems. 6 The global spin alignment of vector mesons $(J^P = 1^-) \phi$ and K^{*0} could be sensitive to 7 hadronization scenarios and vorticity of the colliding system. To measure this quantity 8 reliably, several corrections must be applied to remove unwanted detector and event plane q effects. These effects include inefficiency due to limited detector acceptance and efficiency, 10 and finite event plane resolution from the use of different order of event plane $(1^{st} \text{ and } 2^{nd})$ 11 in calculation. Finite elliptic flow (v_2) might affect global spin alignment by pushing more 12 particles toward the in-plane direction; therefore, a precise measurement on centrality 13 and transverse momentum (p_T) dependent v_2 will help to remove any potential bias in 14 the measurements. The Beam Energy Scan II (BES-II) at RHIC provides much greater 15 statistics and new data sets for AuAu collisions at low $\sqrt{s_{\rm NN}}$ (7.7, 9.1, 11.5, 14.6, and 19.6 16 GeV), which will allow us to measure the global spin alignment and v_2 of ϕ and K^{*0} with 17 high precision. In this poster, we will discuss ϕ and K^{*0} reconstruction, signal extraction, 18 and correction procedures necessary to properly measure the global spin alignment of ϕ 19 and K^{*0} for BES-II data. Additionally, we report on the centrality and p_T dependence of 20 v_2 for ϕ and K^{*0} and discuss its effect on measuring global spin alignment. 21