Study of Chiral Magnetic Effect in Isobar (Ru+Ru and Zr+Zr) and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR using Sliding Dumbbell Method

Jagbir Singh (for STAR Collaboration) Department of Physics, Panjab University, Chandigarh, India email: jagbir@rcf.rhic.bnl.gov

Abstract

¹ To probe the Chiral Magnetic Effect (CME) in heavy-ion collisions, a new ² technique, Sliding Dumbbell Method (SDM) [1] is developed to search for ³ the back-to-back charge separation on event-by-event basis. The SDM helps ⁴ in selecting the events corresponding to different charge separations (f_{DbCS}). ⁵ The charge separation distributions for each collision centrality is divided ⁶ into 10 percentile bins to select potential CME-like events corresponding to ⁷ the maximum charge separation (e.g. top 10%) in a given collision centrality. ⁸ Results will be discussed for two- and three-particle correlators with respect ⁹ to each bin of f_{DbCS} for each collision centrality for isobaric and Au+Au ¹⁰ collisions at $\sqrt{s_{\rm NN}} = 200$ GeV. The background contribution due to statistical ¹¹ fluctuations is obtained by shuffling the charges of particles in a given collision ¹² centrality. The correlated background amongst the produced particles which ¹³ got removed due to shuffling is determined by restoring the shuffled charges.

14 References

[1] J. Singh. А. Attri, and М. М. Aggarwal, Proceed-15 of the DAE Symp. Nucl. Phys. **64**, 830 (2019)ings on 16 "http://www.sympnp.org/proceedings/64/E66.pdf". 17