# Measurement of directed flow at forward and backward pseudorapidity in Au+Au collisions at $\sqrt{s_{NN}} = 27$ GeV with the Event Plane Detector (EPD) at STAR

Xiaoyu Liu (liu.6566@osu.edu), the Ohio State University, for the STAR Collaboration

### Abstract

The measurement of pseudorapidity ( $\eta$ ) dependence of directed flow ( $v_1$ ) can provide unique constraints on the three-dimensional initial conditions in heavy-ion collisions. In the year 2018, the Event Plane Detector (EPD,  $2.1 < |\eta| < 5.1$ ) was installed in STAR and used for the Beam Energy Scan phase-II (BES-II) data taking. The combination of EPD and high statistics BES-II data enables us to extend the  $v_1$  measurement to the forward and backward psuedorapidity regions. In this poster, I discuss the techniques for measuring  $v_1$  with a scintillator detector like EPD, present results of  $v_1$  in Au+Au collisions at  $\sqrt{s_{NN}} = 27$  GeV and compare the results with the UrQMD model.





S. DEPARTMENT OF ENERGY Office of Science

Xiaoyu Liu /Quark Matter 2022



### **Directed flow**

• In heavy ion collisions, the particle azimuthal distribution measured with respect to the reaction plane ( $\Psi_{RP}$ ) is anisotropic and can be expanded into a Fourier series [1]:

$$\frac{dN}{d(\phi - \Psi_{RP})} = k\{1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\phi - \Psi_{RP})]\}$$

- $v_1$  describes the collective sideward motion of produced particles and nuclear fragments. It carries information on the very early stages of the collision.
- In this analysis,  $v_1$  was measured with respect to the first-order event plane ( $\Psi_1$ ) from the Time Projection Chamber (TPC,  $|\eta| < 1$ ,  $0.15 < p_T < 2.0$  GeV/c) to avoid the momentum conservation effect.

Figure 1(a): a sketch shows an event recorded by the TPC and the EPD; (b): the pseudorapidity ( $\eta$ ) range of a EPD tile depends on the primary vertex position. The EPD acceptance is  $2.1 < |\eta| < 5.1$  when  $(V_x, V_y, V_z) = (0,0,0)$ .

# **Event Plane Detector (EPD)**

EPD has two wheels located on the east and west side of the STAR detector. Each wheel consists of 744 tiles [2]. Despite the high granularity, as a scintillator detector, EPD cannot count the exact number of particles hitting a tile in each event. Instead, the ADC value of each tile is recorded, and the signal depends on:

- 1. the number of particles hitting the tile,
- 2. the energy loss of each particle.

The number of particles, averaged over events, can be extracted from the ADC distributions.

ect to the projection GeV/c) to PC and the ends on the  $< |\eta| < 5.1$ Xiaoyu Liu /Quark Matter 2022

# From EPD signal to $v_1$

When a minimum ionizing particle (MIP) goes through a scintillator detector, the energy loss follows a Landau distribution. The width of the Landau distribution only depends on the material and the thickness of the detector. When two MIPs  $\stackrel{>}{\Im}$  go through the detector, the energy loss follows a convolution of the 1-MIP Landau distribution with itself, and so on. Therefore, the EPD ADC distribution is a sum of 1-, 2-, 3-,...MIP Landau distributions with different weights.

Figure 2(a) shows a fitted  $\frac{d^2N}{d(\phi-\Psi_1)dn\operatorname{Mip}}$  distribution. nMip is the calibrated ADC <sup>1</sup> and the position (Most Probable Value) of the 1-MIP Landau distribution (grey peak) is around nMip = 1. The *i* MIPweight ( $M_i$ ) in the fitting parameters represents the fraction of the *i*-MIP events. Figure 2(b) shows a  $\frac{dN}{d(\phi-\Psi_1)} \gtrsim \begin{bmatrix} \widehat{P}_i \\ \widehat{P}_i \\ \widehat{P}_i \end{bmatrix}$ distribution. Each point was calculated as:

$$\frac{dN}{d(\phi - \Psi_n)} = \sum_{i=1}^{i=4} i \times M_i$$

Then,  $v_1$  can be extracted by fitting the Fourier decomposition of  $\frac{dN}{d(\phi-\Psi_1)}$ . Finally,  $v_1$  is corrected for the event plane resolution and the influence from the STAR material budget.

### Xiaoyu Liu /Quark Matter 2022



## **Results**





- v<sub>1</sub>(η) has all corrections applied. Both statistical errors (smaller than markers) and systematic errors (boxes) are plotted. The dashed orange line corresponds to where the incident ions would lie on a rapidity scale.
- Figure 3(a) shows both the STAR mesurement and the UrQMD simulation at three centralities. UrQMD particles are sampled 100 fm/c after the beginning of the collision.
- UrQMD  $v_1(\eta)$  shows the same shape as the measured  $v_1(\eta)$ , although the values are different.
- Figure 3(b) zooms in to the backward  $\eta$  region.  $v_1$  at forward  $\eta$  is also plotted after a 180-degree rotation about the origin.  $v_1(\eta)$  changes sign near the beam rapidity.

### Xiaoyu Liu /Quark Matter 2022

# **Results**



Figure 4: except for STAR BESII, all other data sets only have statistical errors plotted.

✓  $v_1(\eta - y_{\text{beam}})$  follows the pattern of limiting fragmentation [3].

### Outlook

• Use the mixed harmonic method [4] to further study the non-flow effect.

### Reference

 Poskanzer, Arthur M., and Sergei A. Voloshin. Physical Review C 58.3 (1998): 1671
Adams, Joseph, et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 968 (2020): 163970.
STAR, Phys. Rev. C 73.3 (2006): 034903.
STAR, Phys. Rev. C 72.1 (2005): 014904.
PHOBOS, Phys. Rev. Lett. 97.1 (2006): 012301.
STAR, Phys. Rev. C 101.2 (2020): 024905.