Probing the nuclear deformation effects in Au+Au and U+U collisions from STAR experiment

Jiangyong Jia, Stony Brook University

Nuclear deformation is an ubiquitous phenomenon for most atomic nuclei, reflecting collective motion induced by interaction between valance nucleons and shell structure. In most cases, the deformation has a quadrupole shape that is characterized by overall strength β_2 and triaxiality γ (prolate $\gamma = 0$, obolate $\gamma = \pi/3$ and triaxial otherwise). Collisions of deformed nuclei lead to large shape and size fluctuations in the initial state geometry, which after collective expansion, lead to enhanced fluctuation of elliptic flow v_2 and event-by-event mean transverse momentum $[p_{\rm T}]$. Therefore, detailed study of the v_2 , and $[p_{\rm T}]$ and correlations between them can constrain the deformation parameters (β_2, γ) . A comparison of (β_2, γ) with those measured from nuclear structure experiment could then be used to constrain the hydrodynamic responses of heavy-ion collisions. In this poster, we present results of v_2 , $[p_T]$ fluctuations and $v_2^2 - [p_T]$ correlation for harmonics n = 2, 3, 4 in modestly-deformed ¹⁹⁷Au+¹⁹⁷Au collisions at 200 GeV and highly-deformed 238 U+ 238 U collisions at 193 GeV. Significant differences for mean, variance c_2 and skewness c_3 of $[p_{\rm T}]$ fluctuations, are observed between the two systems as a function of centrality. The $v_2^2 - [p_{\rm T}]$ results remain positive over the full centrality in Au+Au collisions, while they change sign in 0-5% central U+U collisions. The ratio of v_2 and c_2 between U+U and Au+Au in ultra-central collisions (UCC) are used to constrain the value of β_2 , which leads to an estimate of $\beta_{2Au} \sim 0.18$. On the other hand, the value of γ can be constrained from the ratios of $v_2^2 - [p_T]$ and c_3 between U+U and Au+Au. The enhancement of c_3 and the suppression of $v_2^2 - [p_T]$ in UCC confirm that Uranum is prolate deformed with $\gamma \sim 0$. Comparison with state-of-art model calculations is discussed.

PACS numbers:

2

3

5

6

7

8

q

10 11

12

13

14

15

16

17

18

19