J/ψ production in isobaric collisions at $\sqrt{s_{\rm NN}} = 200$ GeV with the STAR experiment

Yan Wang and Zebo Tang (for the STAR Collaboration) University of Science and Technology of China

Abstract

 J/ψ is an important probe to the properties of the quark-gluon plasma (QGP) created in heavy-ion collisions. Measurements from SPS, RHIC, and the LHC 2 experiments show that J/ψ production in heavy-ion collisions is an interplay of 3 several effects, including dissociation and regeneration in QGP and cold nuclear matter effects. Studying the properties of the QGP via J/ψ requires a good under-5 standing of all these effects which is very challenging and requires high precision. In 2018, STAR collected a large sample of isobaric collisions $\binom{96}{44}Ru + \frac{96}{44}Ru$ and $\frac{96}{40}Zr$ 7 $+\frac{96}{40}Zr$) at $\sqrt{s_{\rm NN}} = 200$ GeV. The total number of good minimum bias triggered 8 events is around 4 billion. This dataset provides a unique opportunity to perform 9 centrality and transverse momentum (p_T) differential measurements of J/ψ yields 10 with good precision and in fine bins. 11

In this contribution, precision measurements of inclusive J/ψ production in isobaric collisions at $\sqrt{s_{\rm NN}} = 200$ GeV via the e^+e^- decay channel will be presented. The centrality and p_T dependences of the nuclear modification factor $R_{\rm AA}$ and $\langle p_T \rangle$ as a function of centrality will be shown. The first measurement of the ratio of $\psi(2S)$ yield over that of J/ψ in heavy-ion collisions at RHIC will also be presented.