J/ψ production in isobaric collisions at $\sqrt{s_{\rm NN}}=200$ GeV with the STAR experiment

Yan Wang and Zebo Tang (for the STAR Collaboration) University of Science and Technology of China

Abstract

J/ ψ is an important probe to the properties of the quark-gluon plasma (QGP) created in heavy-ion collisions. Measurements from SPS, RHIC, and the LHC experiments show that J/ ψ production in heavy-ion collisions is an interplay of several effects, including dissociation and regeneration in QGP and cold nuclear matter effects. Studying the properties of the QGP via J/ ψ requires a good understanding of all these effects which is very challenging and requires high precision. In 2018, STAR collected a large sample of isobaric collisions ($^{96}_{44}Ru + ^{96}_{44}Ru$ and $^{96}_{40}Zr + ^{96}_{40}Zr$) at $\sqrt{s_{\rm NN}} = 200$ GeV. The total number of good minimum bias triggered events is around 4 billion. This dataset provides a unique opportunity to perform centrality and transverse momentum (p_T) differential measurements of J/ ψ yields with good precision and in fine bins.

In this contribution, precision measurements of inclusive J/ ψ production in isobaric collisions at $\sqrt{s_{\rm NN}} = 200$ GeV via the e^+e^- decay channel will be presented. The centrality and p_T dependences of the nuclear modification factor $R_{\rm AA}$ and $\langle p_T \rangle$

as a function of centrality will be shown. The first measurement of the ratio of

 $\psi(2S)$ yield over that of J/ψ in heavy-ion collisions at RHIC will also be presented.

10

11

12

13

14

15

16