

Multi-dimensional measurements of the parton shower in pp collisions at $\sqrt{s} = 200 \text{ GeV}$

Monika Robotková (robotkova@ujf.cas.cz), Nuclear Physics Institute, Czech Academy of Sciences, for the STAR Collaboration

Motivation

- Jets and their substructure contain information on parton shower (perturbative-QCD) and fragmentation (non-perturbative-QCD) processes
- Our goal is to access parton shower through experimental observables
- Two ways how to study the parton shower:
 - Correlation between substructure observables at the first split
 - Evolution of the splitting kinematics as we travel along the jet shower
- Results are fully unfolded in 3D

SoftDrop

- Grooming technique based on removing soft wide-angle radiation
- Connects parton shower and angular tree

Larkoski, Marzani, Thaler, Tripathee, Xue, Phys. Rev. Lett. 119, 132003 (2017)

- Two STAR publications of substructure observables:
 - z_g and R_g at the first split:
 STAR, Phys. Lett. B, 811, 135846 (2020)
 - \circ *M* (jet mass) and $M_{\rm g}$ (groomed jet mass): STAR, Phys. Rev. D, 104, 052007 (2021)

Shared momentum fraction z_q

$$z_{
m g} = rac{{
m min}(p_{
m T,1},p_{
m T,2})}{p_{
m T,1}+p_{
m T,2}} > z_{
m cut} heta^{eta},$$

where
$$\theta = \frac{\Delta R_{12}}{R}$$

- $p_{T,1}, p_{T,2}$ transverse momenta of the subjets
- z_{cut} threshold (=0.1)
- β angular exponent (=0)
- ΔR_{12} distance of subjets in the rapidity-azimuth plane
- Groomed radius R_a
 - \circ First ΔR_{12} that satisfies SoftDrop condition

Correlation between observables at the first split

- $z_{\rm q}$ with respect to the $R_{\rm q}$ for different $p_{\rm T,jet}$ bins
- Distributions change mildly with varying $p_{\mathrm{T,jet}}$ \rightarrow $R_{\rm g}$ is the driving factor for the change in shape of $z_{\rm g}$ distributions

 Jets with large $R_{\rm g}$ have steeper $z_{\rm g}$ distributions \rightarrow softer splitting is enhanced

First, second and third splits

Conclusion

- Data compared with simulations from different MC generators
- Leading order MC models describe the trend of the data

Correlation at the first split

- $z_{\rm g}$ has a weak dependence on $p_{\rm T,jet}$ and a strong dependence on $R_{\rm g}$
- We can select significantly softer splits by selecting wider angle splits

Splits along the shower

 Observed significantly harder/symmetric splitting at the third/narrow split compared to the first and second splits

Selecting on the split number along the jet clustering tree results in similar change in z_g distributions as selecting on R_g at the first split

Jet substructure measurements at RHIC energies allow to disentangle perturbative (early, wide splits) and mostly non-perturbative dynamics (late, narrow splits) within jet showers

