Post-blind Analysis of Isobar Collisions and Background-controlled Upper Limit on the Chiral Magnetic Effect from STAR

(for the STAR collaboration)

The STAR Collaboration has reported results from a blind analysis of isobar collisions $\binom{96}{44}$ Ru + $\frac{96}{44}$ Ru, $\frac{96}{40}$ Zr + $\frac{96}{40}$ Zr) at $\sqrt{s_{NN}} = 200$ GeV on the search for the chiral magnetic effect (CME). Significant differences were observed in the measured multi-3 plicity (N) and elliptic anisotropy (v_2) between the two isobar systems [1]. The isobar ratio (Ru/Zr) of CME-sensitive observable, v_2 -scaled charge separation ($\Delta \gamma / v_2$) is 5 close to but systematically larger than the inverse multiplicity (1/N) ratio. This in-6 dicates the potential existence of a CME signal, as well as the presence of remaining 7 background that is different between the isobars [2]. In this contribution, we present 8 two post-blind analyses of the isobar data that address the remaining backgrounds and 9 attempt to extract any possible CME signal. One of the analysises applies a weighting 10 procedure such that the two isobar systems have identical distributions of N and v_2 , 11 and then compares the CME-sensitive observables ($\Delta \gamma$ correlator and signed Balance 12 Functions [3]) between two isobars with matched N and v_2 . The other analysis ex-13 amines the two- and three-particle nonflow contributions to the isobar ratio of $\Delta \gamma / v_2$ 14 using real data as well as HIJING simulation. This allows the estimation of a modified 15 background baseline for the $\Delta \gamma / v_2$ ratio. The overall contribution of nonflow is found 16 to be positive, resulting in a background baseline larger than the inverse multiplicity 17 ratio and generally consistent with the isobar measurements. We extract an upper 18 limit of the CME signal in isobar collisions. 19

- ²⁰ [1] M. Abdallah *et al.* (STAR Collaboration), Phys. Rev. C **105**, 014901 (2022)
- ²¹ [2] D. E. Kharzeev, J. Liao and S. Shi, Phys. Rev. C **106**, L051903 (2022)
- ²² [3] S. Choudhury *et al.*, Chinese Phys. C **46** 014101 (2022)