Directed Flow of Λ , ${}^3_{\Lambda}{ m H}$, and ${}^4_{\Lambda}{ m H}$ in Au+Au collisions at $\sqrt{s_{NN}}=3.2,\,3.5,\,{ m and}\,\,3.9~{ m GeV}$ at RHIC

Junyi Han (For the STAR Collaboration) Central China Normal University

Studying hyper-nuclei production and their collectivity can shed light on their produc-

tion mechanism as well as the hyperon-nucleon interactions under finite pressure. This is a unique opportunity for heavy-ion collisions at high baryon density region where hypernuclei production rate increases.

In this poster, we will present v_1 of the hyper-nuclei $(\Lambda, \frac{3}{\Lambda}H, \frac{4}{\Lambda}H)$ from mid-central Au+Au collisions at $\sqrt{s_{NN}} = 3.2$, 3.5, and 3.9 GeV, collected by the STAR experiment with the fixed-target mode during the second phase of the RHIC beam energy scan program. The rapidity dependence of the hyper-nuclei directed flow (v_1) is studied in mid-central collisions. The extracted v_1 slopes of the hyper-nuclei are positive and decrease gradually as the collision energy increases. The results will be compared with models using the framework of hadronic

transport and a coalescence after-burner.