Measurements of proton- Λ and proton- Ξ^- Correlation Functions in Au+Au Collisions from STAR Fixed-Target Experiment

Jing An¹ and Yingjie Zhou²

 $^1{\rm Central}$ China Normal University $^2{\rm GSI}$ Helmholtzzentrum für Schwerionenforschung

May 2, 2023

Abstract

Two-particle correlation analyses are often used to study the spatial and temporal 1 extents of the particle-emitting source in high-energy nuclear collisions. Information 2 on the final state interactions amongst the particles under study can also be extracted 3 from the measurement. For example, from the p- Λ and p- Ξ^- correlation functions, one 4 could study the hyperon-nucleon (Y-N) interactions in such collisions. It is particularly 5 interesting to study the dependence on the collision energy of the source size at the 6 moment of freeze-out. The STAR fixed-target program from $\sqrt{s_{\rm NN}} = 3.0$ to 7.7 GeV 7 has enabled us to investigate the high baryon density region from $\mu_{\rm B} = 420$ to 750 MeV. 8 In this poster, the first measurements of p- Λ and p- Ξ^- correlations function in Au + 9 Au collisions at $\sqrt{s_{\rm NN}} = 3.2, 3.5$, and 3.9 GeV with the fixed-target mode from STAR 10

will be presented. The results will be compared with the data from $\sqrt{s_{\rm NN}} = 3.0 \text{ GeV}$ Au + Au collisions ($\mu_{\rm B} = 750 \text{ MeV}$) and the data from higher energies [1, 2], where $\mu_{\rm B}$ is close to 0, along with model calculations generated via the UrQMD hadronic transport model and CRAB afterburner.

15 References

¹⁶ [1] STAR, Phys. Rev. C 74, 064001 (2006)

17 [2] ALICE, Nature 588, 232–238 (2020)