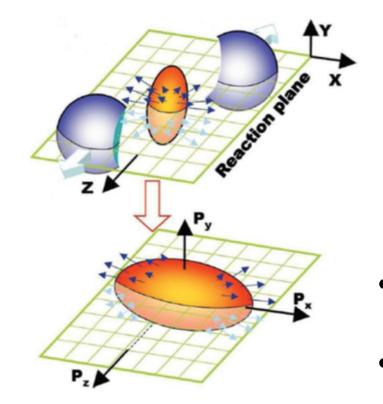


Anisotropic flow of (multi-)strange hadrons in Au+Au collisions at $\sqrt{s_{NN}} = 14.6$ and 19.6 GeV from the STAR experiment at RHIC

Like Liu(likeliu@mails.ccnu.edu.cn), Central China Normal University, for the STAR Collaboration



- A. Bazavov et al., Phys. Rev. D 85, 054503 (2012);
- RHIC 200 GeV and LHC Small viscosity, high temperature **Evidence of Quark-Gluon Plasma**
- Beam energy scan program Search for Critical Point Locate the phase boundary

Anisotropic flow

Anisotropies in particle momentum distributions relative to the reaction plane

Initial spatial anisotropy \rightarrow Pressure gradient \rightarrow Anisotropic flow in momentum space

$$\frac{d^3N}{dp^3} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + \sum_{1}^{\infty} 2v_n \cos\left[n\left(\phi - \psi_{RP}\right)\right] \right)$$

v₁: directed flow

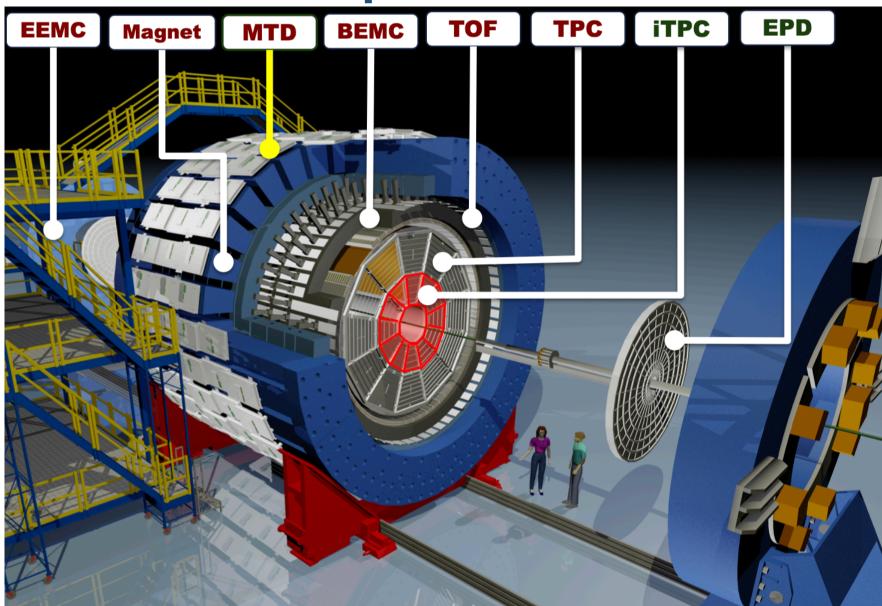
19.6 GeV Au+Au TPC 2nd ղ-sub EP

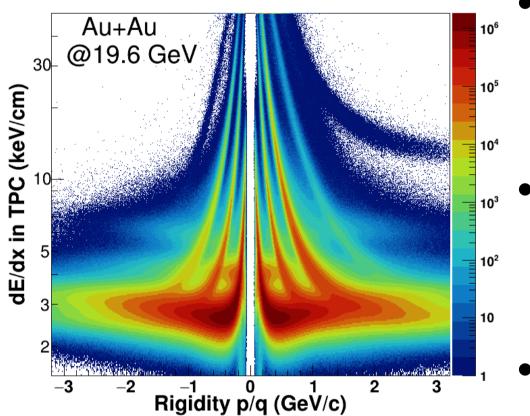
△ BES-II, lŋl < 1.5

□ BES-I, ml < 1

1.117

BES-II/BES-


Centrality [%]


 χ^2 / ndf 18.15 / p0.117 ± 0.001

$$v_1 = \cos(\phi) = \langle \frac{p_x}{p_T} \rangle$$
 $v_2 = \cos(2\phi) = \langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \rangle$

- Spatial asymmetries rapidly decrease with time, anisotropic flow developed early in the medium evolution
- Multi-strange hadrons more sensitive to the partonic stage of the collision
 - Small hadronic interaction cross sections
 - Freeze-out earlier than other light hadrons

Experimental setup

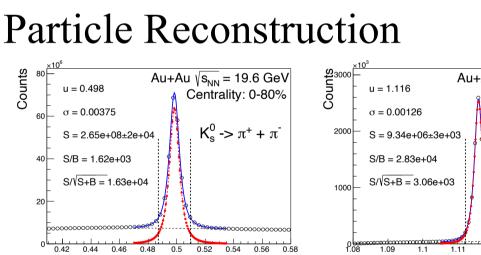
The STAR Detector Full 2π azimuthal coverage Large acceptance at mid-rapidity Excellent particle identification Upgrade of inner-TPC Better track quality Larger acceptance: lηl: 1 -> 1.5, p_T: 125 -> 60 MeV/c TPC, TOF and EPD used in this analysis

A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C58, 1671 (1998); B. Mohanty, N. Xu, Journal of Physics G 36, 064022 (2009)

Analysis method

Event plane method

- The nth harmonic event plane (EP) was calculated by Q vector
- Event plane resolution estimated by two sub-events method
- 1st order EP reconstructed by EPD, while 2nd EP by TPC


$$\Psi_{n} = \tan^{-1} \left(\frac{\sum_{i} w_{i} \sin(n\phi_{i})}{\sum_{i} w_{i} \cos(n\phi_{i})} \right) / n$$

$$\overrightarrow{Q} = \begin{pmatrix} Q_{y} \\ Q_{x} \end{pmatrix} = \begin{pmatrix} \sum_{i} w_{i} \sin(n\phi_{i}) \\ \sum_{i} w_{i} \cos(n\phi_{i}) \end{pmatrix}$$

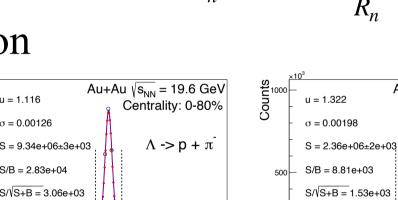
$$R_{n,sub} = \sqrt{\left\langle \cos\left[n\left(\Psi_{n,east} - \frac{1}{2}\right)\right\rangle + 1} \right\rangle$$

$$C_{n,sub} = \sqrt{\left\langle \cos\left[n\left(\Psi_{n,east} - \frac{1}{2}\right)\right\rangle + 1} \right\rangle}$$

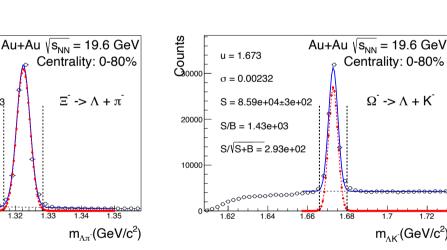
• The v_n are corrected by EP resolution: $v_n =$

 $m_{\pi^+\pi^-}$ (GeV/c²)

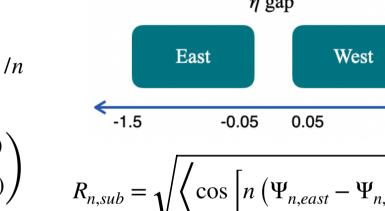
m_{k⁺κ} (GeV/c²

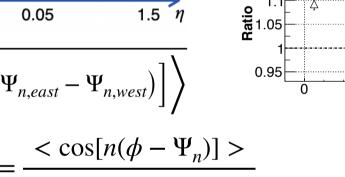

Au+Au √s_{NN} = 19.6 GeV Centrality: 0-80%

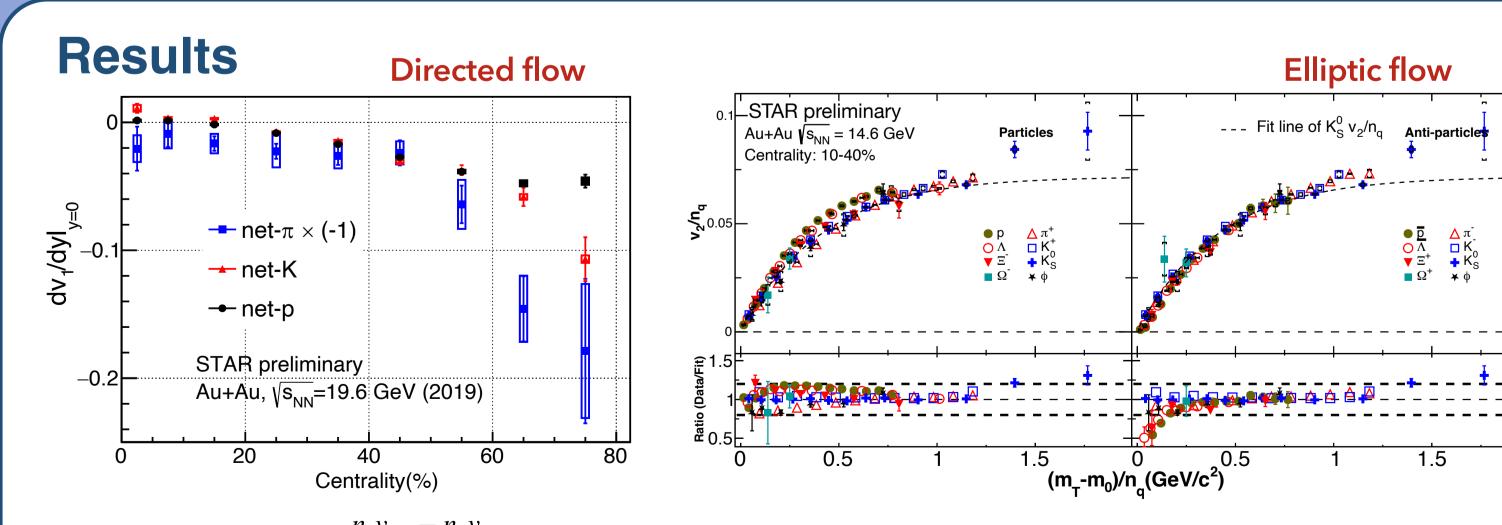
 $\phi -> K^{+} + K^{-}$


 $\sigma = 0.00375$

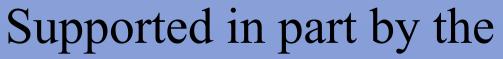
Mixed Event


SF-MF




 $m_{p\pi}$ (GeV/c²)

- K_s^0 , Λ , $\bar{\Lambda}$, Ξ^{\pm} , Ω^{\pm} are reconstructed by topological method background described by first order polynomial
- ϕ -mesons are reconstructed by K^+K^- channel
 - background estimated by using mixed event method


• Net-particles v₁: $v_{1,\text{net}} = \frac{n_p v_{1,p} - n_{\bar{p}} v_{1,\bar{p}}}{n_p - n_{\bar{p}}}$, n_p is particles yield, $n_{\bar{p}}$ is anti-particles yield, define π^{-1} , K^{-1} are anti-particles

Centrality dependence of v_1 slope for net-particle (net-p, net-K and net-pion), larger in more peripheral collisions, an ordering of net-particles flow observed

- NCQ scaling of v_2 holds
- **Partonic collective flow**
- NCQ scaling of anti-particles is better than particles **Produced vs. transported quarks**

Summary & Outlook

- Centrality dependence of dv_1/dy for net-particle (net-p, net-K, net-pion), and v_2 (p_T) for strange particles (K^{\pm} , K_S^0 , Λ , $\overline{\Lambda}$, ϕ , Ξ^- , Ξ^+ , Ω^- , and Ω^+) are measured
- An ordering of centrality dependence of dv_1/dy for net-p, net-K and net-pion are observed, provides additional constraints to the models
- NCQ scaling of v₂ holds well indicates collective flow has been built up in the partonic stage
- Outlook: Explore the QCD phase diagram with v₁, v₂ of (multi-)strange hadrons in BES-II

The STAR Collaboration https://drupal.star.bnl.gov/STAR/presentations

