Di-Hadron Photoproduction in Au+Au Ultra-Peripheral Collisions at 200 GeV

Xin Wu (for the STAR Collaboration),

University of Science and Technology of China, Email: wuxinust@mail.ustc.edu.cn

Abstract

Relativistic heavy-ion collisions generate extremely strong electromagnetic fields, providing an ideal environment to study the electromagnetic excitation of the vacuum. This poster shows the first measurements of baryon-antibaryon and meson-antimeson pair production from QED vacuum excitation in Au+Au ultra-peripheral collisions at $\sqrt{s_{NN}}$ = 200 GeV by the STAR experiment. These measurements will shed new lights on the understanding of the QED vacuum.

Motivation

- The ground state of quantum system is characterized by zero-point motion, and consequentially the creation and annihilation of virtual matter and antimatter particle pairs occur all the time in QED vacuum.
- An electromagnetic field which reaches the Schwinger limit would separate the virtual particle pairs. These virtual particle pairs will evolve to real particle pairs in a dynamic environment and be observed.
- The Breit-Wheeler process has been observed by STAR*, but higher excitation mode of QED vacuum from pure electromagnetic fields has never been measured.

*J.Adam et al. (STAR), Phys.Rev.Lett. 121 (2018) 13, 132301

STAR

$\gamma\gamma \rightarrow h\overline{h}$?

The Solenoidal Tracker At RHIC (STAR)

- Time of flight: particle identificatin
- Time Projection Chamber: track reconstruction, particle identification

Zero-Degree Calorimeter: detect neutrons

Event Selection and Particle Identification

- Dataset: Au+Au at 200 GeV taken in 2010/2011
 Trigger: UPC-main
- (ZDC coincidence + BBC veto + bTOF activity)
- Luminosity: 1085.9 μb⁻¹ (2010), 858 μb⁻¹ (2011)
- Event selection: nPrimary = 2.

• PID:
$$\chi^2_{p\bar{p}}$$
 (or $\chi^2_{K^+K^-}$)<4 & $\chi^2_{\pi^+\pi^-}$ >20 ($\chi^2_{12} = n\sigma_1^2 + n\sigma_2^2$)

Pairs with |y|<0.05 are rejected to remove cosmic rays.

Supported in part by the

Office of Science and Technology of China

observed.

theory.

contribution in the future.

The STAR Collaboration https://drupal.star.bnl.gov/S TAR/presentations

The photo-induced K^+K^- and $p\overline{p}$ process has been

Separate the photon-photon and photon-nucleus

 $p_{\rm T}$ and invariant mass spectra will be compared to