

Baryon-Strangeness Correlations in $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au Collisions from RHIC-STAR

Yu Zhang (yuz@ccnu.edu.cn) for the STAR Collaboration Central China Normal University

Abstract

Fluctuations of conserved quantities are proposed as a powerful observable to search for the QCD critical point. Recently, proton cumulants from central Au+Au $\sqrt{s_{NN}}$ = 3 GeV collisions were reported. The results imply that hadronic interactions are dominant at $\sqrt{s_{NN}}$ = 3 GeV and the QCD critical point could exist at higher collision energies. The baryon-strangeness correlation is expected to deviate from the QGP expectation at high baryon-chemical potential, which can be a signature for turning-off of the QGP. We report the second-order baryon-strangeness correlation using proton, K^{\pm} , and Λ in Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV from the fixed-target program at the STAR experiment. Physics implications of the results as well as comparisons with model calculations are discussed.

" S 1.0 0.4 Baryon chemical potential, μ_B (MeV) Figure from [1]

Introduction Baryon-strangeness correlation coefficient:

$$C_{BS} = -3 * \frac{\langle \overline{BS} \rangle_c}{\langle S^2 \rangle_c} = -3 * \frac{\langle BS \rangle - \langle B \rangle \langle S \rangle}{\langle S^2 \rangle - \langle S \rangle^2}$$

The B and S are number of baryon and strangeness, respectively

- Sensitive to the onset of deconfinement [1]
- Previous STAR measurements on mixcumulant (using p, K⁺ and their antiparticles) are far away from theoretical prediction [2]
- This work tests the turning-off signal of QGP in 3 GeV Au+Au collisions

STAR Detector & Fixed-Target Setup

Analysis Details

- A reconstruction is done for various topological cuts combination.
- Higher ∧ significance means both higher ∧ purity and reconstruction efficiency. >
- A purity correction method [3] which supposes background in signal region is equivalent to sideband, is used to statistically remove background effect.
- The Λ C₂ (variance) are flat and stable with purity correction (red circles).

Results

- 3 GeV Data (p, K*, A 3 GeV UrQMD (p, K* 200 GeV Data (p, K* Au+Au collisions --0.5 < y < 0 0.4 < p_{_} < 2.0 GeV/c 200 GeV UrQMD (n. K° Λ purity corrected S S cv corrected STAR Preliminary Number of Participating Nucleons $\langle N_{part} \rangle$
- The negative $\langle BS \rangle_c$ in all centralities indicates negative correlation between baryon and strangeness.
- The $\langle BS \rangle_c$ and $\langle S^2 \rangle_c$ values show deviations from Poisson baselines within 2σ uncertainties while they show larger deviations from UrQMD calculations.
- The C_{BS} ratio of 3 GeV data is well described by UrQMD calculation while 200 GeV data [4] is under-estimated by UrQMD.
- > The consistency between 3 GeV data and hadronic transport model calculation supports the conclusion that hadronic interactions are dominant in 3 GeV Au+Au collisions.

Summary

- We report the centrality dependence of C_{BS} ratio in 3 GeV Au+Au collisions from RHIC-STAR.
- ➤ The C_{BS} ratio of 3 GeV data is well described by UrQMD calculation.
- STAR results support the conclusion that hadronic interactions are dominant in 3 GeV Au+Au collisions.

References

- [1] V. Koch, A. Majumder, and J. Randrup, PRL 95, 182301 (2005)
- [2] STAR, PRC 105, 29901 (2022)
- [3] T. Nonaka, NIMA 1039,167171 (2022)
- [4] T. Nonaka, ISMD2023

Supported in part by the

China Postdoctoral Science Foundation: 2022M721293

The STAR Collaboration https://drupal.star.bnl.gov/S TAR/presentations