

# Measurements of two-pion Femtoscopy in Au+Au Collisions at $\sqrt{s_{NN}}$ = 3.0, 3.2, 3.5, and 3.9 GeV from RHIC-STAR



Youquan Qi (qyq@mails.ccnu.edu.cn) for the STAR Collaboration, Central China Normal University

## **Abstract**

Femtoscopic measurements are sensitive to the spatial and temporal characteristics of the particle emitting-source, allowing us to probe the properties of the matter created in heavy-ion collisions. We report the results on two-pion femtoscopy measurements in Au+Au collisions at  $\sqrt{s_{\rm NN}}$  = 3.0, 3.2, 3.5, and 3.9 GeV measured by the STAR experiment. The extracted correlation strength and HBT radii from the 3D correlation functions are presented as a function of collision energy, centrality, and pair transverse momentum.

#### Introduction

- 3D two-pion correlations is sensitive to the geometry of the pion-emitting source, the duration of pion emission and the resonance decay contributions [1].
- If the first-order transition to QGP takes place, the time scale for pion emission is expected to increase [2].
- Polynomial Definition of the correlation function:  $c(\vec{q}) = \frac{N_{same}(\vec{q})}{n_{mixed}(\vec{q})}$ .  $\vec{q} = \vec{p}_2 \vec{p}_1$ ;  $N_{same}(\vec{q})$ : pairs from same event (includes quantum statistics and final state interactions);  $D_{mixed}(\vec{q})$ : pairs from different events [3].
- Extract parameters by Bowler-Sinyukov formula [4,5]:
  - $C(q_{out}, q_{side}, q_{long}) = N[(1 \lambda) + \lambda K(q_{inv})(1 + exp(-R_{out}^2 q_{out}^2 R_{side}^2 q_{side}^2 R_{long}^2 q_{long}^2 2R_{out-long}^2 q_{out} q_{long}))]$ Where N: normalization constant;  $\lambda$ : correlation strength;  $K(q_{inv}) = \int d^3r \rho(\vec{r}) |\psi_r(\vec{r}, q_{inv})|^2$  (coulomb effect).

#### STAR Fixed-Target Setup



- Gold target of thickness 1.93 g/cm<sup>2</sup> (0.25 mm).
- Located 200.7 cm from the center of the TPC.
- Collision energies:  $\sqrt{s_{NN}} = 3.0 7.7 \text{ GeV}.$
- Extend the  $\mu_B$  region up to ~720 MeV.

### Correlation Functions



- $\lambda$  increases from low to high  $k_T$ .
- ightharpoonup Extracted radii decrease from low to high  $k_T$  and central to peripheral collisions due to the collective flow and the initial overlapping geometry.
- $R_{out-long}^2$  has clear centrality dependence and
- dependence at mid-rapidity.

## Centrality and k<sub>T</sub> Dependence of Parameters



Extracted  $R_{side}$  and  $R_{long}$  of  $\pi^-\pi^-$  are larger than that for  $\pi^+\pi^+$ , most visible for the central collision and low  $k_{\rm T}$ .

## **Energy Dependence of Parameters**





There are difference between  $\pi^-\pi^$ and  $\pi^+\pi^+$ , which may be due to the mean field and require further model

- The results of  $\lambda$  and  $R_{side}$  are consistent within the uncertainties compared to earlier world data and  $\lambda$  decreases as energy increases due to the long-lived resonances decay.  $R_{out}$ values are smaller than those from E895.  $R_{long}$  are consistent with the trend of STAR higher energy and HADES results, but opposite to the E895.
- The results of  $R_{out}^2 R_{side}^2$  and  $R_{out}/R_{side}$  are smaller than those from E895, but follow the trend of STAR higher energy and HADES.
- $ightharpoonup V = (2\pi)^{\frac{3}{2}}R_{side}^2R_{long}$ , it varies weakly with energy and does not show a significant increase at smaller energies.

# Summary

- We report the results on two-pion femtoscopy measurements in Au+Au collisions at  $\sqrt{s_{\rm NN}}=3.0$ , 3.2, 3.5, and 3.9 GeV measured by the STAR experiment.
- We systematically discussed the dependence of the extracted physical parameters on collision energy, centrality, and k<sub>T</sub>.
- We found there are differences between  $\pi^-\pi^$ and  $\pi^+\pi^+$  at low energy.
- Except for  $\lambda$ , there are differences between our results and E895, especially for  $R_{long}$  and V, where the trend is opposite.
- Our results follow the trends of STAR higher energy and HADES

#### References

- [1] W. Bauer et al., Annu. Rev. Nucl. Part. Sci. 42, 77 (1992).
- [2] S. Pratt et al., Phys. Rev. C 42, 2646 (1990).
- [3] M. Lisa, S. Pratt, R. Soltz, et al., Annu. Rev. Nucl. Part. Sci., 55: 357-402 (2005).
- [4] Yu. Sinyukov et al., Phys. Lett. B 432, 248 (1998).
- [5] M. Bowler, Phys. Lett. B 270, 69 (1991).

Supported in part by the



