

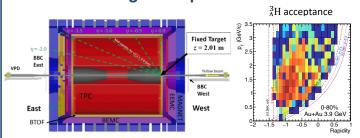
Measurements of Hypertriton Production in Au+Au Collisions from 3 to 7.7 GeV

Yuanjing Ji (yuanjingji@lbl.gov), for the STAR Collaboration Lawrence Berkeley National Laboratory

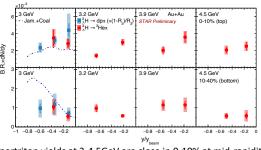
Abstract

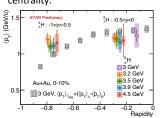
Hypernuclei are bound states of nuclei with one or more hyperons. Precise measurements of hypernuclei properties and their production yields in heavy-ion collisions are crucial for the understanding of their production mechanisms. The STAR Beam Energy Scan II program offers us a great opportunity to investigate collision energy and system size dependence of hypernuclei production.

In this poster, we present new measurements on transverse momentum (p_T) , rapidity (y), and centrality dependence of ${}_{\lambda}^{A}H$ production yields in Au+Au collisions from $\sqrt{s_{NN}}$ = 3 to 7.7 GeV. These results are compared with phenomenological model calculations, and physics implications on the hypernuclei production mechanism are also discussed.


Motivation

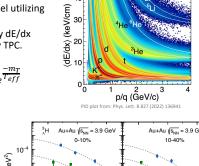
- · Production mechanism of hypernuclei in heavy ion collisions.
 - · Role and strength of hyperon-nucleon (Y-N) interaction in nuclei formation.
- · Energy dependence of hypernuclei yields.
 - · When and how are loosely bound hypernuclei formed in heavy ion collisions.
- · Rapidity dependence
 - · Coalescence mechanism (mid-rapidity) and nuclear fragmentation (target rapidity).




STAR Fixed-target setups

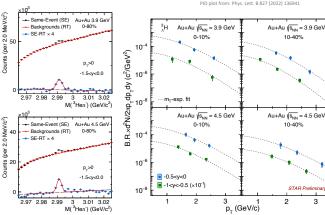
Rapidity dependence of yields and <p_>

- Hypertriton yields at 3-4.5GeV are close in 0-10% at mid-rapidity.
- JAM+Coal. can describe the tendency of $^3_{\Lambda}$ H yields as a function of rapidity at 0-10% centrality; while fails to describe the trend in 10-40% centrality.

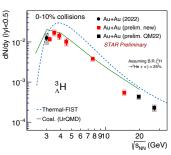

(EPJ Web Conf. 276 (2023) 04003) Uncertainty from R_3 is not included in the plot. STAR 3 GeV $^3_\Lambda H \rightarrow {}^3He~\pi^-$: Phys. Rev. Lett. 128 (2022) 202301

- $^{3}_{\Lambda}$ H <p_T> are comparable in Au+Au collisions at $\sqrt{s_{NN}} = 3-4.5 \text{ GeV}$ within uncertainties.
- The radial flow behavior of ${}^{3}_{\Lambda}H$ is similar as light nuclei.

p_T spectra in Au+Au $\sqrt{s_{NN}} = 3.9$ and 4.5 GeV


- · Hypertritons are reconstructed via the ${}^{3}_{\Lambda}H \rightarrow {}^{3}He \,\pi^{-}$ channel utilizing KFParticle package.
- ³He/π⁻ are identified by dE/dx information provided by TPC.
- p_⊤ spectra are fitted by:

$$\frac{d^2N}{2\pi n_r dn_r dy} = C \cdot e^{\frac{-m_I}{T_{eff}}}$$



Office of

Science

Energy dependence of ³H yields

Thermal (GSI): A. Andronic et al. PLB 697.203-207 (2011) PHOMD: Susanne Gläßel et al. PRC 105, 014908 (2022).

V. Kireyeu et al. arXiv:1911.09496 Pb+Pb: ALICE, PLB 754, 360 (2016) STAR at 3 GeV; PRL 128, 202301 (2022)

- ³H yields peak at 3-4 GeV, then decrease with higher energy.
- · Thermal model fails to describe the trend at RHIC energies.
 - · Hypernuclei maybe dominantly produced after the hadron chemical freeze-out at RHIC.
- · Coalescence calculation consistent with data at 3.5 $<\sqrt{s_{NN}}$ <10 GeV, while still significantly higher than data at higher energies.

Summary and outlook

- Rapidity dependence of ${}_{\Lambda}^{3}\mathrm{H}$ yields and $<\!p_{T}\!>$ in Au+Au $\sqrt{s_{NN}}=3$ -4.5 GeV are
- Energy dependence of ${}^{3}_{\Lambda}{\rm H}$ production at RHIC cannot be well described by model calculations.
- 2×10^9 events in Au+Au collisions at 3GeV taken at RHIC Run 2021.
 - · Enable precise measurements on centrality and rapidity dependence of hypernuclei (${}_{\Lambda}^{3}H$, ${}_{\Lambda}^{4}H$, ${}_{\Lambda}^{4}He$) yields in the future.

