

Light Nuclei Production in Au+Au Collisions at

 $\sqrt{s_{\rm NN}}$ = 14.6 and 19.6 GeV from RHIC BES-II

Yixuan Jin (jyx@mails.ccnu.edu.cn), for the STAR Collaboration Central China Normal University

Abstract

In high-energy nuclear collisions, the light nuclei production is sensitive to the temperature and density of the system at freeze-out. It is also predicted to be sensitive to local baryon density fluctuations and can be used to probe the QCD phase transition. The second phase of Beam Energy Scan (BES-II) program at RHIC was completed in 2021. The high-statistics data recorded by the STAR experiment provide a unique opportunity to carry out high-precision measurements on the light nuclei production.

In this poster, we will report the results of the centrality and transverse momentum dependence of proton (p), deuteron (d) and ³He production in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 14.6 and 19.6 GeV measured by the STAR experiment. We will also present the centrality dependence of coalescence parameters $(B_2(d)$ and $B_3(^3He))$ and particle ratios $(N_d/N_p$ and $N_{^3He}/N_p)$, and discuss their physics implications.

Introduction

- QCD Phase transition
- Low baryon density: crossover.
- High baryon density: 1st order phase boundary and critical point.
- Light nuclei, such as deuteron and ³He, are ² loosely bound objects with small binding $\hat{Z}^{0.4}$ energies. Those are formed via coalescence of nucleons [1, 2].

 $E_{\rm A}\frac{\mathrm{d}^3N_{\rm A}}{\mathrm{d}^3p_{\rm A}} = B_{\rm A}\left(E_{\rm p}\frac{\mathrm{d}^3N_{\rm p}}{\mathrm{d}^3p_{\rm p}}\right)^{\rm Z}\left(E_{\rm n}\frac{\mathrm{d}^3N_{\rm n}}{\mathrm{d}^3p_{\rm n}}\right)^{\rm Z}$

STAR Detector and Particle Identification

Detector Corrections

Transverse Momentum Spectra

Au + Au Collisions

10 20 30 50 100 200 Collision Energy VS_{NN} (GeV)

Primordial Spectra

- The primordial spectra were obtained by subtracting the (anti-)proton decaved strange hadrons.
- Data driven method Use STAR published strange particle $(\Lambda, \Sigma^{+}, \Xi^{-}, \Xi^{0})$ yield and embedding simulation samples.

dN/dy and Particle Ratios

- dN/dy for light nuclei increase from peripheral to central collisions; dN/dy for positive particle decrease with increasing energy, dN/dy for antiparticles are the opposite.
- The particle ratios show a monotonic decrease with collision energy; d/p ratio $^{\left[2\right]}$ can be described well by the thermal model [5], but the model over-predicts t/p and 3He/p by a factor of about 2.

Coalescence Parameters

 B_{A} changes as a function of collision centrality and transverse momentum is due to collective expansion [2,3].

Summary

- We report the centrality dependence of proton, deuteron, Helium-3, and anti-proton, antideuteron productions in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 14.6 and 19.6 GeV from RHIC STAR
- The particle ratios N_d/N_p and $N_{^3{\rm He}}/N_p$ have been calculated for Au+Au collisions at 19.6
- Due to collective expansion, coalescence parameter $B_{\rm A}$ is found to increase from central to peripheral collisions and from low to high p_{T} bins.

References

- [1] F Bellini et al. Phys. Rev. C 99 (2019) 054905.
- [2] J. Adam, et al. [STAR Collaboration], Phys. Rev. C 99 (2019) 064905
- [3] K. J. Sun, et al., Phys. Lett. B 774 (2017) 103-107; Phys. Lett. B 781(2018) 499-504 [4] H. Abdulhamid, et al. [STAR Collaboration], Phys. Rev. Lett 130 (2023)
- [5] A. Andronic, et al., Nucl. Phys. A772 (2006) 167-199; Phys. Lett. B 697 (2011) 203-207

