

Measurements of Hypernuclei Production in Au+Au Collisions from 3.2 to 4.5 GeV from STAR

Xiujun Li (<u>lixiujun@mail.ustc.edu.cn</u>), for the STAR Collaboration University of Science and Technology of China, University of Tsukuba

Abstract

Hypernuclei, bound states of nuclei with one or more hyperons, serve as a natural laboratory to investigate the hyperonnucleon (Y-N) interaction, an important ingredient for the equation-of-state (EoS) of nuclear matter. Precise measurements of hypernuclei properties and their production yields in heavy-ion collisions are crucial for the understanding of their production mechanisms and the strength of the Y-N interaction.

The STAR Beam Energy Scan II program and isobar collisions offer a great opportunity to investigate energy and system size dependence of hypernuclei production. In this poster, we present new measurements on $^3_\Lambda H$ production yields in Au+Au collisions from 3.2 to 4.5 GeV. The measurements of $^4_\Lambda H$ at these energies will be brought out in the future. The prospect of strangeness population factor (S₃) with isobar dataset is also discussed.

Motivation

- What are hypernuclei?
- Bound nuclear system of non-strange and strange baryons
- Why study hypernuclei?
- · Probe Y-N interactions
- Production mechanism of hypernuclei in heavy-ion collisions are not well understood.

$^{3}_{\Lambda}$ H p_T Spectra in Au+Au $\sqrt{s_{NN}}$ = 3.2 GeV and Energy Dependence of $^{3}_{\Lambda}$ H Yields

- · Dataset: 201M events, year 2019 FXT
- Daughter particle identification: dE/dx using TPC
- KFparticle package for hypernuclei reconstruction
- $^{3}_{\Lambda}$ H reconstructed via $^{3}_{\Lambda}$ H \rightarrow 3 He + π^{-}

• Extrapolate to $p_T = 0$ using m_T -exp function

- High production yields of $^3_\Lambda H$ around 3-4 GeV and decrease towards higher energies
- None of the production models can describe the energy dependence quantitatively

30 40

Towards ⁴H Production Measurements

- Thermal model can describe ${}^4_\Lambda H/\Lambda$, but overestimates ${}^3_\Lambda H/\Lambda$
- $B_{\Lambda}({}_{\Lambda}^{4}H) \sim 2$ MeV, much larger than $B_{\Lambda}({}_{\Lambda}^{3}H) \sim 150$ keV
- → Does B_Λ play a role in hypernuclei production yields?

- Mid-rapidity coverage of ⁴_ΛH in FXT with inner TPC upgrade
 - ${}^4_{\Lambda}{\rm H}$ reconstructed via ${}^4_{\Lambda}{\rm H} \rightarrow {}^4{\rm He} + \pi^-$
 - ⁴_ΛH yield measurements from 3.2 to 4.5 GeV are ongoing

Statistical Projections of S₃ with Isobar Dataset

• Strangeness population factor $S_3 = \frac{{}_{\Lambda}^3 H/{}^3 He}{\Lambda/p}$

- Relative suppression of hypernuclei production compared to light nuclei production
- Double ratio S₃ cancels out effects from the difference in the proton and hyperon densities involved

10³ Coalescence: Phys. Lett. B 792 (2019)132-137

3 N_{ch}/dη_{h+0.5} SHM(Thermal-FIST): Phys. Lett. B 785 (2018)171-174

ALICE: arXiv:2107.10627, Phys. Lett. B 754 (2016) 360-37

ermal and coalescence model deviates

- \bullet The S_3 predicted by thermal and coalescence model deviates strongly in the low multiplicity region
- Good statistical significance using 2018 data from isobar collisions (2 billion events per system) provides differentiation capability b/w thermal and coalescence models

Summary

- High production yields of $^3_\Lambda H$ around 3-4 GeV and decrease towards higher energies
 - Cannot be quantitatively described by production models
- Thermal model can describe ⁴_ΛH/Λ, but overestimates ³_ΛH/Λ
- Explore the role of B_{Λ} in hypernuclei formation process
- ⁴/_AH measurements from 3.2 to 4.5 GeV are ongoing
- Future S₃ with isobar dataset will help to distinguish models

3 4 5 6 7 8 10

