

Exploring Electromagnetic Field Effects and Constraining Transport Parameters of QGP Using STAR BES II Data

Aditya Prasad Dash (For the STAR Collaboration) University of California, Los Angeles September 06, 2023

Supported in part by the

Motivation

- The medium formed in a heavy ion collision undergoes many stages in its evolution
- Crucial to disentangle initial and final stage effects
- We present measurements sensitive to initial electromagnetic fields and 3D initial state

https://u.osu.edu/vishnu/2014/08/06/sketch-of-relativistic-heavy-ion-collisions/

STAR experiment

Collision System: Au+Au Beam Energies: 200, 54.4, 19.6, 14.6 and 7.7 GeV in BES-II

Time Projection Chamber

Tracking of charged particles with full azimuthal coverage

Time of Flight

Extends particle identification to higher momenta, full azimuthal coverage

Event Plane Detector and Zero Degree Calorimeter Used for event plane reconstruction, EPD (2.1< $|\eta|$ <5.1), $ZDC-SMD(|\eta| > 6.3)$

The STAR detector

Motivation

- Ultra strong magnetic fields $\sim 10^{18}$ Gauss are expected in very early stages of Heavy Ion Collisions.
- Decays fast ~ sensitive to formation time of quarks and QGP conductivity
- Important to understand QGP evolution in presence of EM fields [U. Gürsoy et al. PRC 98,055201, PRC 89 054905]

Directed Flow

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n}\cos(n(\phi - \Psi))\right)$$

 v_1 is called directed flow and can be estimated by

$$v_1 = \langle \cos(\phi - \Psi_{\rm EP}) \rangle / R\{\Psi_{\rm EP}\}$$

[A. M. Poskanzer et al. PRC 58 1671]

φ=azimuthal angle of particle momentum Ψ_{EP} = event plane azimuthal angle $R{\Psi_{EP}}$ = Event plane resolution

Quark Matter 2023

EM field effects on directed flow

Quarks in the expanding medium experience different forces due to

- 1.Hall Effect: $F = q(v \times B)$
- 2.**Coulomb Effect**: **E** generated by spectators
- 3.Faraday Induction: Generated by decreasing magnetic field as spectators fly away

[U. Gürsoy et al. PRC 98,055201, PRC 89 054905]

These EM forces give opposite v_1 to particles with opposite charges

Transported quark effect: Quarks transported from incoming nuclei can have different v_1 than that of quarks produced in the interaction region. It can affect hadrons having u and d quarks.

EM field effects on directed flow

Demonstration for protons

$\Delta dv_1/dy = dv_1(h^+)/dy - dv_1(h^-)/dy$

Models show positive dv_1/dy for transported quarks [1].

Δdv₁/dy sign change could reveal effects of electromagnetic fields in QGP

Transported quark effects on pions should give opposite $\Delta dv/dy_1$ compared to protons and kaons assuming quark coalescence [1] Y. Guo et al. PRC 86, 044901, K. Nayak et al. PRC 100, 054903, P. Bożek PRC 106, L061901

Quark Matter 2023

[STAR, arXiv:2304.03430]

$d\Delta v_1/dy$ in 10-40% centrality (mid central)

- $> \Delta v_1$ difference of particles with pairproduced quarks eg. $\bar{p}(\bar{u}\bar{u}\bar{d})$ and $K^{-}(\bar{u}s)$
- > The $d\Delta v_1/dy$ combinations (fit constrained to origin) show positive slope and increase with Δq and ΔS
- Hall effect could be dominant in mid central \succ collisions

Index	Quark mass	Δq	ΔS	Δv_1 combination	$F_{\Delta} imes 10^4 \ (27$
1	$\Delta m = 0$	0	0	$[ar{p}(ar{u}ar{u}ar{d})+\phi(sar{s})]-[K^{-}(ar{u}s)+ar{\Lambda}(ar{u}ar{d}ar{s})]$	$03\pm43\pm13$
2	$\Delta m pprox 0$	1	2	$[ar{\Lambda}(ar{u}ar{d}ar{s})] - [rac{1}{3}\Omega^-(sss) + rac{2}{3}ar{p}(ar{u}ar{u}ar{d})]$	$41\pm25\pm16$
3	$\Delta m pprox 0$	$\frac{4}{3}$	2	$[ar{\Lambda}(ar{u}ar{d}ar{s})] - [K^{-}(ar{u}s) + rac{1}{3}ar{p}(ar{u}ar{u}ar{d})]$	$39\pm07\pm03$
4	$\Delta m = 0$	2	6	$[\overline{\Omega}^+(ar{s}ar{s}ar{s})]-[\Omega^-(sss)]$	$83\pm130\pm2$
5	$\Delta m pprox 0$	$\frac{7}{3}$	4	$[\overline{\Xi}^+(\bar{d}\bar{s}\bar{s})] - [K(\bar{u}s) + \frac{1}{3}\Omega(sss)]$	$64\pm36\pm19$

Quark Matter 2023

v₁(y) for 50-80% centrality (peripheral)

In peripheral collisions (50-80%), proton Δv_1 slope turns negative

Significantly negative slopes (from linear fit) in all considered energies

[STAR, arXiv:2304.03430]

Particle species and centrality dependence

Beam energy dependence for a given particle

 $> \Delta(dv_1)/dy$ in peripheral collisions is more negative at lower collision energies for each species > t_{passage} (2R/ γ) larger, hence lifetime(EM field) should be longer.

 \succ Lifetime(fireball) is shorter at lower energies.

Quark Matter 2023

[U. Gürsoy et al. PRC 98,055201, PRC 89 054905, STAR arXiv:2304.03430]

Δv_1 as a function of pt

> Negative Δv_1 for p_T ranges considered in this analysis in peripheral collisions

Indication of larger splitting at higher pT as expected from theory [U. Gürsoy et al. PRC 98,055201, PRC 89 054905]

Longitudinal Decorrelation

 \succ r_n(η) reflects decorrelation between event planes at η and $-\eta$ $r_n(\eta)=1$ when there is no decorrelation or non-flow effects

 $r_n(\eta) = \frac{\langle q_n(-\eta)q_n^*(\eta_{ref})\rangle}{\langle q_n(+\eta)q_n^*(\eta_{ref})\rangle} = \frac{\langle v_n(-\eta)v_n(\eta_{ref})\cos\{n[\psi_n(-\eta) - \psi_n(\eta_{ref})]\}\rangle}{\langle v_n(+\eta)v_n(\eta_{ref})\cos\{n[\psi_n(+\eta) - \psi_n(\eta_{ref})]\}\rangle}$

Measurement of $r_2(\eta)$

Significant deviation from unity at RHIC energies

- \succ Effect is strongest in central collisions
- > 27 and 19.6 GeV show larger effect than 54.4 GeV in central collisions

> AMPT(10-40%) shows stronger deviation than data (can be used to constrain initial longitudinal structure)

[P. Dixit et al. arXiv:2307.08406]

Measurement of r₃(η)

> r₃(η) is 2-3 times stronger than r₂(η)

- > r₃(η) shows weak centrality dependence
- > Hints of larger deviation at lower beam energies

> AMPT (10-40%) shows comparable magnitude (can be used to constrain initial longitudinal structure) [P. Dixit et al. arXiv:2307.08406]

Constraining initial state using correlations

 Ψ_2 ψ_1 Event planes

Normalized higher-order flow correlations:

> Gives the correlation strength between different flow harmonics (magnitudes and directions) > Less sensitive to the medium properties, i.e., $\frac{\eta}{-}(T)$

> More sensitive to the heavy ion collisions' initial state

[N. Magdy PRC 107 (2023) 2, 024905, J. Jia et al. PRC 96 034906 (2017)]

Quark Matter 2023

 ψ_5 ψ_3 ψ_4

Event plane angular correlations

The event plane angular correlations between ψ_1 and ψ_2 for Au+Au collisions at 200 GeV

- \succ Positive correlations between ψ_1 and ψ_2 observed.
- Positive correlations between ψ_1 and ψ_2 Similar trends were observed for k=2 and 4. $\left\langle \cos(4\psi_1 4\psi_2) \right\rangle$ is expected to suppress the global momentum ψ_2 conservation effect.
- \succ Can be used to constrain the initial state models.

$$\left\langle \cos\left(2\psi_{1}-2\psi_{2}\right)\right\rangle = \left\langle v_{1}^{2}v_{2}\cos\left(2\psi_{1}-2\psi_{2}\right)\right\rangle / \sqrt{\left\langle v_{1}^{4}\right\rangle \left\langle v_{2}^{2}\right\rangle}$$
$$\left\langle \cos\left(4\psi_{1}-4\psi_{2}\right)\right\rangle = \left\langle v_{1}^{4}v_{2}^{2}\cos\left(4\psi_{1}-4\psi_{2}\right)\right\rangle / \left\langle v_{1}^{4}v_{2}^{2}\right\rangle$$
[N. Magdy

ly PRC 107 (2023) 2, 024905, A. Bilandzic et al. PRC 102 2 024910 (2020), M. Luzum et al. PRC 87, 044907]

Event plane angular correlations

- > The $\rho_{2,4}$ and $\rho_{2,3}$ show weak beam energy dependence
- > Correlations between ψ_2 and ψ_3 consistent with 0
- > Except for $\rho_{2.6}$ we observe reasonable agreement with the AMPT model
- > Non-vanishing correlations are observed for higher order event plane angular correlations

Suggests the influence from the initial state is more than from the final-state

[STAR, Phys.Lett.B 839 137755 (2023)]

STAR Preliminary (a) 0.1 1.0- NSC (2,3) Au+Au 200 GeV Au+Au 54.4 GeV Au+Au 27 GeV -0.3 Au+Au 19.6 GeV: • Au+Au 14.6 GeV (b)NSC(2,4) 20 30 50 1040 Centrality (%)

$$NSC(n,m) = \frac{\langle 4 \rangle_{nm} - \langle 2 \rangle_n \langle 2 \rangle_m}{\langle 2 \rangle_n^{Sub} \langle 2 \rangle_m^{Sub}}$$
$$v_4^2 = \left(v_4^L\right)^2 + \chi_{2,2} \left(v_2\right)^2$$
$$\boxed{\text{Mode coupling}}$$

- Anti-correlation between v_2 and v_3
- \diamond Correlation between v_2 and v_4
- > NSC(n, m) shows weak dependence on beam energy.

Flow harmonics correlations Comparison of the normalized symmetric cumulants, NSC(2,3) and NSC(2,4), vs. centrality \succ Consistent with the expected anti-correlation between ϵ_2 and ϵ_3 \succ Consistent with the expectations from mode coupling between v_2 and v_4 Suggests the influence from the initial state is more than that from the final-state [STAR Phys.Lett.B 839 137755 (2023), A. Bilandzic et al. PRC 89, 064904, R.A. Lacey et al. arXiv:1311.1728, N. Magdy Universe 2023, 9(2), 107]

Quark Matter 2023

Flow harmonics correlations

Comparison of the six-particles (normalized) symmetric cumulants, vs. centrality

$$SC(n,m)\{6\} = \langle 6 \rangle_{nnm} - \langle 4 \rangle_{nn} \langle 2 \rangle_m - 2 \langle 4 \rangle_{nm} \langle 2 \rangle_m + 2 \langle 2 \rangle_n^2 \langle 2 \rangle_n^2$$
$$NSC(n,m)\{6\} = \frac{SC(n,m)\{6\}}{\langle 2 \rangle_n^{Sub} \langle 2 \rangle_n^{Sub} \langle 2 \rangle_m^{Sub}}$$

- \clubsuit Anti-correlation between v_2 and v_3
- \succ Consistent with the expected anti-correlation between ϵ_2 and ϵ_3
- Correlation between v_2 and v_4
- \succ Consistent with the expectations from mode coupling between v_2 and v_4

Can be used to constrain the initial state models

[A. Bilandzic et al. PRC 102 2 024910 (2020), N. Magdy PRC 107, 024905 (2023)]

Quark Matter 2023

Summary

We present preliminary measurements of Δv_1 , $r_n(\eta)$ and flow harmonics correlations $\Delta \mathbf{V}_1$

- Consistent with models using strong EM fields and conductivity from lattice QCD
- lifetime of the electromagnetic field and shorter lifetime of the fireball

$r_2(\eta)$ and $r_3(\eta)$

- Significant deviation from unity at RHIC energies
- \succ Different centrality and beam energy dependence for $r_2(\eta)$ and $r_3(\eta)$

Event plane and flow harmonics correlations

> $\rho_{2,3}$, $\rho_{2,4}$, NSC(n,m) show weak dependence on beam energy

Our results can help constrain conductivity of QGP and the 3D initial state through model comparisions

 $> \Delta(dv_1/dy)$, negative in peripheral collisions — consistent with dominance of Faraday+Coulomb effect $> \Delta(dv_1/dy)$ in peripheral collisions, more negative for lower collision energies \longrightarrow consistent with longer

Quark Matter 2023

Quark Matter 2023

Backup

Dataset and Quality Assurance cuts

Collision System: Au+Au

Beam Energies: 19.6 GeV,14.6 GeV and 7.7 GeV in BES-II

Event Selection

Variable	Accepted values	Reason
$ v_z $	$< 70 \mathrm{cm}$	to ensure uniform acceptance
$ v_r $	$< 2 \mathrm{cm}$	to exclude events having collision of nuclei wit
		and other material

Figures are from Au+Au collisions at $\sqrt{s_{NN}} = 19.6$, 14.6 and 7.7 GeV

Tracks selection

	-	
Variable	Accepted values	
Transverse momentum (p_T)	(0.2, 2.0) GeV/c	opti
Distance of closest approach (dca)	$\leq 2 { m cm}$	to reduce
Psueudorapidity (η)	(-1,1)	oj
nHitsFit	≥ 15	to en

PID selection

Particle	$ n\sigma $	nHitsDedx	$p_T ~({\rm GeV/c})$	p (GeV/c)	
Protons	< 2	≥ 15	> 0.4	< 2	
Pions	< 2	≥ 15	> 0.2	< 1.6	
Kaons	< 2	≥ 15	> 0.20	< 1.6	

*p_T dependent nσ cuts were used for 19.6GeV

Quark Matter 2023

$\Delta v_1(p_T)$ at 14.6GeV and 7.7GeV

- Similar p_T dependence trend at 19.6, 14.6 GeV and 7.7 GeV

Quark Matter 2023

• Indication of larger splitting at higher p_T as expected from theory [U. Gürsoy et al. PRC 98,055201, PRC 89 054905]

Constraining heavy ion collisions' initial state

Normalized higher-order flow correlations:

- \succ Gives the correlation strength between different flow harmonics magnitudes and directions
- > Less sensitive to the medium properties, i.e., $\frac{\eta}{-}(T)$
- \succ More sensitive to the heavy ion collisions' initial state
- Our measurements are accomplished using two- and multi-particle correlations **

Measurements k-Particle correlations	Analyses method
Two	Two Subevents
Three	Two Subevents
Four	One Subevent
Five	One Subevent
Six	One Subevent

[N. Magdy PRC 107, 024905 (2023), J. Jia et al. PRC 96 034906 (2017)]

Beam energy dependence and stage sensitivity

- > Higher order flow harmonics are sensitive probes for $\frac{\eta}{-(T)}$ due to enhanced viscous response
- These flow harmonics and their fluctuations and correlations can be used to constrain $\frac{T}{T}$ and differentiate between initial state models

Viscous attenuation ($\propto \frac{\eta}{s}(T)$) is beam energy dependent.

[N. Magdy QM2022]

Analysis procedure **Symmetric correlations** 2PC $\rightarrow CF(n_1 = -n_2)$, $\{2\}$ " φ_1 from sub event A and φ_2 from B" $\langle \cos[n_1\varphi_1 + n_2\varphi_2] \rangle = \langle v_{n_1}^2 \rangle$ 4PC $\rightarrow CF(n_1 = -n_3, n_2 = -n_4)$ {4} " φ_1 and φ_2 from sub event A, φ_3 and φ_4 from B" $\langle \cos[n_1\varphi_1 + n_2\varphi_2 + n_3\varphi_3 + n_4\varphi_4] \rangle = \langle v_{n_1}^2 v_{n_2}^2 \rangle$ 6PC $\rightarrow CF(n_1 = -4, n_2 = -n_5, n_3 = -n_6)$ {6} "One subevent" $\langle \cos[n_1\varphi_1 + n_2\varphi_2 + n_3\varphi_3 + n_4\varphi_4 + n_5\varphi_5 + n_6\varphi_6] \rangle$ Symmetric Cumulants $SC(n_1, n_2) = CF(n_1, n_2) \{4\} - CF(n_1) \{2\} CF(n_1) \{2\}$ $SC(n_1, n_2, n_3) = CF(n_1, n_2, n_3) \{6\} - CF(n_1, n_1) \{4\} CF(n_1) \{2\}$ $-2 CF(n_1, n_2) \{4\} CF(n_2) \{2\}$

+2 $CF(n_1)$ {2} $CF(n_1)$ {2} $CF(n_2)$ {2}

 $|\Delta \eta| > 0.7$

$$=\left\langle \mathbf{v}_{n1}^{2}\mathbf{v}_{n2}^{2}\mathbf{v}_{n3}^{2}\right\rangle$$

Normalized Symmetric Cumulants

$$NSC(n_1, n_2) = \frac{SC(n_1, n_2)}{CF(n_1)\{2\} CF(n_1)\{2\}}$$

$$NSC(n_1, n_2, n_3) = \frac{SC(n_1, n_2)}{CF(n_1)\{2\} CF(n_1)\{2\} CF(n_3)}$$

[J. Jia PRC 96 034906 (2017), N. Magdy PRC 107, 024905 (2023)]

Analysis procedure

Asymmetric correlations

3PC \rightarrow ASC $(n_1, n_2, n_3 = -n_1 - n_2)$ φ_1 and φ_2 from sub event A and φ_3 from B"

$$ASC_{n_{1}n_{2}n_{3}} = \left\langle \cos[n_{1}\varphi_{1} + n_{2}\varphi_{2} + n_{3}\varphi_{3}] \right\rangle$$
$$= \left\langle v_{n1}v_{n2}v_{n3}\cos[n_{1}\psi_{n1} + n_{2}\psi_{n2} + n_{3}\psi_{n3}] \right\rangle$$

4PC
$$\rightarrow$$
 ASC $(n_1 + n_2 = -n_3 - n_4)$

 φ_1 and φ_2 from sub event A, φ_3 and φ_4 from B

$$ASC_{n_1n_2n_3n_4} = \left\langle \cos[n_1\varphi_1 + n_2\varphi_2 + n_3\varphi_3 + n_4\varphi_4] \right\rangle$$
$$= \left\langle v_{n1}v_{n2}v_{n3}v_{n4}\cos[n_1\psi_{n1} + n_2\psi_{n2} + n_3\psi_{n3} + n_4\psi_{n4}] \right\rangle$$

5PC
$$\rightarrow$$
 ASC $(n_1 + n_2 + n_3 = -n_4 - n_5)$
One subevent

$$ASC_{n_1n_2n_3n_4n_5} = \left\langle \cos[n_1\varphi_1 + n_2\varphi_2 + n_3\varphi_3 + n_4\varphi_4 + n_5\varphi_5] \right\rangle$$
$$= \left\langle v_{n1}v_{n2}v_{n3}v_{n4}v_{n5}\cos[n_1\psi_{n1} + n_2\psi_{n2} + n_3\psi_{n3} + n_4\varphi_4] \right\rangle$$

 $|\Delta \eta| > 0.7$

 ρ_{n_1,n_2,n_3}

 ρ_n , n_2 , n_3 , n_4

$$= \frac{\operatorname{ASC}(n_1, n_2, n_3)}{\sqrt{|\operatorname{SC}(n_1, n_2, -n_1, -n_2)\operatorname{SC}(n_3, -n_3)|}},$$

$$\sim \langle \cos(n_1\psi_{n_1} + n_2\psi_{n_1} + n_3\psi_{n_3}) \rangle;$$

$$= \frac{\operatorname{ASC}(n_1, n_2, n_3, n_4)}{\sqrt{|\operatorname{SC}(n_1, n_2, n_3, -n_1, -n_2, -n_3)\operatorname{SC}(n_4, -n_4)|}}, \\ \sim \left\langle \cos\left(n_1\psi_{n_1} + n_2\psi_{n_1} + n_3\psi_{n_3} + n_4\psi_{n_4}\right) \right\rangle; \\ \rho_{n_1, n_2, n_3, n_4, n_5} \\ = \frac{\operatorname{ASC}(n_1, n_2, n_3, n_4, n_5)}{\sqrt{|\operatorname{SC}(n_1, n_2, n_3, -n_1, -n_2, -n_3)\operatorname{SC}(n_4, n_5, -n_4)|}} \\ \sim \left\langle \cos\left(n_1\psi_{n_1} + n_2\psi_{n_1} + n_3\psi_{n_3} + n_4\psi_{n_4} + n_5\psi_{n_5}\right) \right\rangle$$

 $_{4}\psi_{n4} + n_{5}\psi_{n5}]\rangle$

[J. Jia et al. PRC 96 034906 (2017), N. Magdy PRC 107, 024905 (2023)]

Symmetric Cumulants

Comparison of the six-particle correlation function vs. centrality

- Beam energy dependence was observed for CF(2,2,3) and CF(2,2,4)
- > Consistent with the expected energy dependence of viscous damping
- Smaller non vanishing values was observed for CF(2,3,4) and CF(2,3,5)

Sensitive to the interplay between final- and initial-state effects.

[STAR Phys.Lett.B 839 137755 (2023), J. Jia et al. PRC 96 034906 (2017), N. Magdy PRC 107, 024905 (2023)]

Quark Matter 2023

