# <sup>1</sup> Measurements of azimuthal anisotropies in ${}^{16}\text{O}+{}^{16}\text{O}$ and <sup>2</sup> $\gamma$ +Au collisions from STAR

#### <sup>3</sup> Shengli Huang<sup>1,\*</sup> for the STAR Collaboration

<sup>4</sup> <sup>1</sup>Stony Brook University, Chemistry Department

#### Abstract.

5

In these proceeding, we present the first measurements of azimuthal 6 anisotropies,  $v_2$  and  $v_3$ , in  ${}^{16}O+{}^{16}O$  collisions at 200 GeV as a function of 7 transverse momentum and multiplicity, by using two- and four-particle corre-8 lation methods. We compare our measurements with STAR measurements of 9  $v_n$  in d+Au and <sup>3</sup>He+Au collisions to provide insight into the impact of sys-10 tem symmetry on initial condition for small systems. We also investigate the 11 ratio  $v_2\{4\}/v_2\{2\}$  as a function of centrality, which is expected to be sensitive 12 to nucleon-nucleon correlation in the <sup>16</sup>O nucleus. 13

## 14 1 Introduction

<sup>15</sup> Recently, the anisotropic flow harmonics have been extensively measured in various small <sup>16</sup> system collisions via two- and multi-particle correlations from p+p [1, 2] to p+A [3–7], <sup>17</sup> and  $\gamma+A$  collisions [8]. However, the origin of collectivity in small system collisions still <sup>18</sup> lacks satisfactory explanations, primarily due to the relatively limited understanding of the <sup>19</sup> initial conditions in small systems. The initial geometry in small systems is predominantly <sup>20</sup> influenced by fluctuations, encompassing not only position fluctuations from nucleons and <sup>21</sup> sub-nucleons but also longitudinal dynamical fluctuations [9]. Moreover, nucleon-nucleon <sup>22</sup> correlations, such as nucleonic clusters in light nuclei, can also significantly impact the initial <sup>23</sup> geometry [10, 11]. The small system collision scan at RHIC, including both symmetric and <sup>24</sup> asymmetric small systems (O+O > <sup>3</sup>He+Au > *d*+Au > *p*+Au > *γ*+Au), could provide a better <sup>25</sup> understanding of initial conditions.

### <sup>26</sup> 2 Measurements of di-hadron correlations in <sup>16</sup>O+<sup>16</sup>O collisions

<sup>27</sup> The charged hadrons are detected in the Time Project Chamber (TPC) [12] at STAR detector <sup>28</sup> which covers the pseudo-rapidity range around  $|\eta| \le 1.5$ . The per-trigger yield of two-particle <sup>29</sup> azimuthal angular correlations  $Y(\Delta\phi) = 1/N_{\text{Trig}}dN/d\Delta\phi$  is measured to extract the anisotropy <sup>30</sup> harmonics. The two-track efficiency corrections are evaluated via single-particle efficiency <sup>31</sup> from embedding in peripheral Au + Au collisions.

Figure 1 shows the distributions  $Y(\Delta \phi)$  for <sup>16</sup>O+<sup>16</sup>O collisions in different centralities. The centrality here is defined with total multiplicity measured with Event-Plane-Detector

<sup>\*</sup>e-mail: shengli.huang@stonybrook.edu



**Figure 1.** Two-particle per-trigger yield distributions in  ${}^{16}O+{}^{16}O$ collisions collisions at  $\sqrt{s_{NN}} = 200$ GeV for different centralities; the trigger and associated particles are selected in  $0.2 < p_T < 2.0$  GeV/c and  $1.0 < |\Delta \eta| < 3.0$ . An illustration of the Fourier functions fitting procedure, to estimate the "nonflow" contributions and extract the  $v_2$  and  $v_3$  flow coefficients, is also shown.

<sup>34</sup> (EPD), which covers  $2.1 < |\eta| < 5.1$ . For these correlators, the trigger (Trig)- and the associ-<sup>35</sup> ated (Assoc)-particles are measured in the range  $0.2 < p_T < 2.0$  GeV/c and  $1.0 < |\Delta\eta| < 3.0$ . <sup>36</sup> The near- and away-side patterns of the distributions for central <sup>16</sup>O+<sup>16</sup>O collisions indicate <sup>37</sup> a sizable influence from flow, and "nonflow" correlations that can be removed with the sub-<sup>38</sup> traction methods outlined below. The correlator for 60-80% <sup>16</sup>O+<sup>16</sup>O collisions (Fig. 1(e)) is <sup>39</sup> dominated by "nonflow" correlations, and thus can be used to estimate "nonflow" contribu-<sup>40</sup> tions in central <sup>16</sup>O+<sup>16</sup>O collisions.

<sup>41</sup> A Fourier function fit is employed to the measured  $Y(\Delta \phi)$  distributions to extract <sup>42</sup>  $v_{2,3}(p_T^{\text{Trig.}})$  as:

$$Y(\Delta\phi, p_{\rm T}^{\rm Trig.}) = c_0 (1 + \sum_{n=1}^4 2c_n \cos(n\,\Delta\phi)).$$
(1)

where  $c_0$  represents the average pair yield (also referred to as the pedestal), and  $c_n$  (for 44 n = 1 to 4) are the Fourier coefficients. The corresponding harmonic components are depicted 45 by the colored dashed lines in Fig. 1. The non-flow contributions are subtracted with:

$$c_n^{\text{sub}} = c_n - c_n^{nonflow} = c_n - c_n^{peri.} \times f$$
<sup>(2)</sup>

<sup>46</sup> where the  $c_n^{\text{sub}}$  is  $c_n$  after nonflow subtraction. The methods differ from each other in terms <sup>47</sup> of how the scale factor *f* is estimated. Four established methods are implemented to estimate <sup>48</sup> the factor *f* with the details which can be found in ref. [7]. Systematic uncertainties account <sup>49</sup> for the variations among the four methods.

The  $c_n$  is simply the product of  $v_n$  for trigger- and associated-particles, i.e.  $c_n = v_n^{\text{Trig.}} \times v_n^{\text{Assoc.}}$ 

## $_{52}$ 3 $v_n$ in symmetric and asymmetric small systems

<sup>53</sup> The  $v_2(p_T)$  and  $v_3(p_T)$  in 0-10% <sup>16</sup>O+<sup>16</sup>O collisions are compared with that in 0-10% *d*+Au <sup>54</sup> and <sup>3</sup>He+Au collisions as shown in the Figure. 2. As shown in panel (a), the  $v_2(p_T)$  in 0-10% <sup>55</sup> <sup>16</sup>O+<sup>16</sup>O is smaller than that from *d*+Au and <sup>3</sup>He+Au collisions. However, the values of <sup>56</sup>  $v_3(p_T)$  shown in panel (b) are similar among the three small systems. It is consistent with <sup>57</sup> the initial geometry predicted by Glauber model calculations, which include sub-nucleon <sup>58</sup> fluctuations [13]. In such a model, the  $\varepsilon_2$  are similar between *d*+Au and <sup>3</sup>He+Au collision <sup>59</sup> and larger than that of <sup>16</sup>O+<sup>16</sup>O collisions, while  $\varepsilon_3$  are similar between three systems.



**Figure 2.** The  $v_2(p_T)$  values (left panels) and  $v_3(p_T)$  values (right panels) in the 0-10%  ${}^{16}O{+}^{16}O$  and compared with that in 0-10% d+Au and  ${}^{3}$ He+Au collisions

# $_{60}$ 4 Centrality dependence of $v_2\{4\}/v_2\{2\}$ in ${}^{16}$ O+ ${}^{16}$ O collisions

<sup>61</sup> Protons and neutrons can organize themselves into sub-group structures known as clusters <sup>62</sup> within nuclei. In nuclei such as <sup>16</sup>O with double magic numbers—where the neutron and <sup>63</sup> proton (atomic) numbers each equals 8—two protons and two neutrons exhibit a tendency to <sup>64</sup> group together, forming a alpha cluster [14].

The impact of clusters on the initial geometry fluctuations differs significantly from the predictions of two major *ab initio* [15] methods. One approach stems from nuclear lattice effor fective field theory (NLEFT) [16], while the other involves quantum Monte Carlo calculations utilizing chiral effective field theory Hamiltonians (VMC) [17]. Consequently, measuring the initial geometry fluctuations in  ${}^{16}O+{}^{16}O$  collisions becomes essential for gaining insights into nucleon-nucleon correlation and for constraining the varied predictions of the *ab initio* lattice reflective field theory.

The initial geometry fluctuation can be measured via the ratio of  $v_2\{4\}/v_2\{2\}$  [18], where

$$v_{2}\{2\}^{2} = \langle v_{2}^{2} \rangle$$

$$v_{2}\{4\}^{4} = 2 \langle v_{2}^{2} \rangle^{2} - \langle v_{2}^{4} \rangle$$
(1)

<sup>73</sup> since the initial geometry has a strong linear relation with final state, i.e.  $\varepsilon_2\{4\}/\varepsilon_2\{2\}=$ <sup>74</sup>  $K \times v_2\{4\}/v_4\{2\}$ , where *K* captures the response from medium dynamical properties.

Figure 3 depicts the ratio  $v_2\{4\}/v_2\{2\}$  as a function of centrality, defined by charged 75 hadron multiplicity measured at  $|\eta| < 1.5$ . The  $\varepsilon_2\{4\}/\varepsilon_2\{2\}$ , calculated using the PHOBOS 76 Glauber model [19] with <sup>16</sup>O configurations from NLEFT, VMC models and three-parameter 77 Fermi (3pF) distribution which fits to the radial density distribution from aforementioned 78 models respectively, is also presented for comparison. It is noteworthy that we identified an 79 issue in the public PHOBOS Glauber code related to the implementation of <sup>16</sup>O configura-80 tions, and we have since rectified it. Consequently, the calculation presented here differs from 81 that showcased in the QM presentation. 82

Upon comparison, our findings indicate that the measurements align more closely with the eccentricity ratio from the VMC model, whereas they are considerably smaller than those from the NLEFT model or 3pF distributions. Nevertheless, a detailed hydrodynamics model and transport model are imperative to determine the parameter K. It will further decipher the difference and help to constrain the test of the performance between different *ab initio* models.

#### 5 Summary

<sup>90</sup> We compare the measured  $v_2(p_T)$  and  $v_3(p_T)$  in 0-10% <sup>16</sup>O+<sup>16</sup>O collisions at  $\sqrt{s_{NN}} = 200$ <sup>91</sup> GeV with those in 0-10% *d*+Au and <sup>3</sup>He+Au collisions. This comparison underscores the



**Figure 3.** The figure illustrates  $v_2\{4\}/v_2\{2\}$  as a function of centrality, defined by charged hadron multiplicity at  $|\eta| < 1.5$ , in <sup>16</sup>O+<sup>16</sup>O collisions. Additionally, the  $\varepsilon_2\{4\}/\varepsilon_2\{2\}$  ratio from NLEFT, VMC, and two types of 3pF distributions are presented for comparison. Note that an issue is identified in the publicly available PHOBOS Glauber, which affected the implementation of the NLEFT and VMC configuration. This has been corrected in the updated figure

<sup>92</sup> significance of sub-nucleon fluctuations in small systems. The ratio  $v_2\{4\}/v_2\{2\}$  is observed <sup>93</sup> to be closer to the  $\varepsilon_2\{4\}/\varepsilon_2\{2\}$  ratio from the VMC calculation, while being smaller than <sup>94</sup> that from NLEFT. This observation suggests that  $v_2\{4\}/v_2\{2\}$  can serve as a powerful tool <sup>95</sup> for studying nucleon-nucleon correlations in collisions involving light nuclei.

Looking ahead, the measurements of  $\gamma$ +Au collisions from the Au+Au data taken in 2021 and 2023 will provide further insights into understanding initial conditions such as subnucleon fluctuations and nucleon-nucleon correlations.

#### **Beferences**

- <sup>100</sup> [1] V. Khachatryan et al. (CMS), JHEP **09**, 091 (2010), **1009.4122**
- <sup>101</sup> [2] G. Aad et al. (ATLAS), Phys. Rev. Lett. **116**, 172301 (2016), **1509.04776**
- <sup>102</sup> [3] S. Chatrchyan et al. (CMS), Phys. Lett. B **718**, 795 (2013), 1210.5482
- <sup>103</sup> [4] B. Abelev et al. (ALICE), Phys. Lett. B **719**, 29 (2013), 1212.2001
- <sup>104</sup> [5] G. Aad et al. (ATLAS), Phys. Rev. Lett. **110**, 182302 (2013), 1212.5198
- <sup>105</sup> [6] N.J. Abdulameer et al. (PHENIX), Phys. Rev. C **107**, 024907 (2023), 2203.09894
- <sup>106</sup> [7] M.I. Abdulhamid et al. (STAR), Phys. Rev. Lett. **130**, 242301 (2023), 2210.11352
- 107 [8] G. Aad et al. (ATLAS), Phys. Rev. C 104, 014903 (2021), 2101.10771
- <sup>108</sup> [9] S. Huang, Z. Chen, J. Jia, W. Li, Phys. Rev. C 101, 021901 (2020), 1904.10415
- <sup>109</sup> [10] W. Broniowski, E. Ruiz Arriola, Phys. Rev. Lett. **112**, 112501 (2014)
- [11] Y.G. Ma, S. Zhang, <u>Influence of Nuclear Structure in Relativistic Heavy-Ion Collisions</u>
   (2022), pp. 1–30, 2206.08218
- <sup>112</sup> [12] X. Wang, F. Shen, S. Wang, C. Feng, C. Li, P. Lu, J. Thomas, Q. Xu, C. Zhu, Nucl.
   <sup>113</sup> Instrum. Meth. A **859**, 90 (2017), 1704.04339
- 114 [13] K. Welsh, J. Singer, U.W. Heinz, Phys. Rev. C 94, 024919 (2016), 1605.09418
- 115 [14] N. Furutachi, S. Oryu, M. Kimura, A. Dote, Y. Kanada-En'yo, Prog. Theor. Phys. 119,
- 116 403 (2008), 0706.0145
- 117 [15] U.G. Meißner, Nucl. Phys. News. 24, 11 (2014), 1505.06997
- [16] S. Elhatisari, E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, N. Li, B.n. Lu, U.G. Meißner,
   G. Rupak, Phys. Rev. Lett. 119, 222505 (2017), 1702.05177
- [17] A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk,
   Phys. Rev. Lett. 111, 032501 (2013), 1303.6243
- 122 [18] A. Bilandzic, R. Snellings, S. Voloshin, Phys. Rev. C 83, 044913 (2011), 1010.0233
- 123 [19] B. Alver, M. Baker, C. Loizides, P. Steinberg (2008), 0805.4411