

### Search for the Chiral Magnetic and Vortical Effects Using Event Shape Variables in Au+Au Collisions at STAR

Zhiwan Xu (for the STAR Collaboration) University of California, Los Angeles Sep 5, 2023 Supported in part by







## **Chiral Magnetic and Vortical Effect**

- QCD vacuum transition leads to chirality imbalance.
- CME: Chirality imbalance of quarks coupled with strong magnetic field induces an electric charge separation with respect to reaction plane.
- CVE: Chirality imbalance and net baryon density under large vorticity induces a baryonic charge separation.
- CME (CVE) violates local Parity Symmetry and CP Symmetry!



Quark Matter 2023

Kharzeev, Pisarski, Tytgat, PRL 81(1998) 512 S.A. Voloshin, Phys. Rev. C,70, 057901 (2004)



Zhiwan Xu, Sep 5 2023





### **Experimental Observabl**





**BKG indicator:**  $\gamma^{132} = \langle \cos(\varphi_1 - 3) \rangle$ 



Quark Matter 2023

S.A. Voloshin, Phys. Rev. C,70, 0579  

$$n(\varphi - \Psi_{RP}) + 2v_{2}\cos(2\varphi - 2\Psi_{RP}) + \dots$$

$$\mu_{5}B \quad (\mu_{5}\mu_{B}\omega)$$
paration
$$-2\Psi_{RP}) \rangle = \langle v_{1}v_{1} \rangle - \langle a_{1}a_{1} \rangle + BG(v_{2}^{cl})$$

$$\Delta \gamma^{CME/CVE} + k\frac{v_{2}}{N} + \Delta \gamma^{nonflow}$$

$$B\varphi_{2} + 2\Psi_{RP}) \rangle \rightarrow \Delta \gamma^{132}$$
Flowing resonance

### Important points from Isobar blind analysis:

- The v<sub>2</sub>-related background is large.
- The possible CME signal is small. Fraction of CME signal is likely not as large in Au+Au.
  - Using participant plane (TPC) entails large nonflow BKG (can be avoided with spectator plane  $\Psi_1$ )
- We need better a method.



### **Schematic Diagram of Event Shape**

- Observable based on final-state particles ( $v_2$ , flow vector  $q_2$ ) has contributions from: participant zone geometry – expected to be long ranged in rapidity emission pattern fluctuations – more localized, less correlated over rapidity



Z. Xu et al, arXiv:2307.14997

**Data experience large** event-by-event fluctuations - main contribution

> H. Petersen and B. Müller, Phys. Rev. C 88, 044918









$$\Delta \gamma^{112} = \Delta \gamma^{\rm CME}$$

## **Simulation results for Event Shape Selection**

**(a)** single v<sub>2</sub> (POI) single q<sup>2</sup> (POI) pair q<sup>2</sup> (POI) pair  $v_2$  (POI) (b)

- The optimal ESS recipe (c) accurately matches the input true CME signal.
- With AMPT, all ESS schemes seem to over-subtract the BKG.



Quark Matter 2023

Z. Xu et al, arXiv:2307.14997

# • Mixed combinations further suppress residual BKG: intercepts follow an ordering (a)>(b)>(c)>(d)



## New Analyses at STAR



Quark Matter 2023

| BES-II Au+Au | Events |
|--------------|--------|
| 27 GeV       | 555 M  |
| 19.6 GeV     | 478 M  |
| 14.6 GeV     | 324 M  |
| 7.7 GeV      | 101 M  |

|                  | 200 GeV Au+Au | Ever |
|------------------|---------------|------|
| run 11+14+16 2.1 | run 11+14+16  | 2.1  |

Advantage:

- Au+Au: Larger system has a stronger B field.
- Lower energy: longer B lifetime.
- BES-II achieved higher statistics than BES-I.
- 200 GeV Au+Au data have accumulated 2.1B events.
- **Detector Upgrades:**
- 2018 EPD : high EP resolution into spectator region Ψ<sub>1</sub>
   (2.1<η<5.1) for BES-II energies.</li>





### See Poster #437 of 200 GeV Au+Au - Event Shape Engineering Han-Sheng Li beam rapidity

q<sub>B</sub> (no POI)

**v**<sub>2</sub> (POI)









### 200 GeV Au+Au - Invariant Mass dependence with ESE



- Low-mass region appears to have a larger charge separation ( $3\sigma$ ) than high-mass region 0 (consistent with zero).
- Measurement relative to  $\Psi_2$ , Residual nonflow effects to be accessed.

See Poster #437 of Han-Sheng Li

Zhiwan Xu, Sep 5 2023





$$\Delta \gamma_{ESS}^{112} = Intercept \times (1 - v_2)^2$$







- The ESS is applied to different centralities. 0
- Ordering of four  $\Delta \gamma_{ESS}^{112}$  follows prediction from model.
- We will focus on the optimal recipe ESS(c).







Quark Matter 2023





- Results from the optimal ESS (c), pair q<sup>2</sup> and single v<sub>2</sub>:
  - At 27 GeV, uncertainties too large to conclude.
  - $\circ$  At 14.6 GeV, the ratio for 20-50% has a 3 $\sigma$  significance.
  - At 7.7 GeV, the current results favor the zero-CME scenario.

Quark Matter 2023



## **Beam Energy Dependence of CME observable**



 $\circ$  After v<sub>2</sub>-BKG subtraction with Event Shape variables, and nonflow suppression with  $\Psi_1$ 

 $\circ$  At 14.6 and 19.6 GeV, a 3 $\sigma$  effect.

• At 7.7, 27, 200 GeV, the current results have large uncertainties. More BES-II data analyses for 11.5 GeV and 9.2 GeV are on the way.



### **CVE measurement at BES-II**

- At 19.6 and 27 GeV, CVE measurements of  $\Lambda$ -p using  $\Delta \gamma$  correlator w.r.t.  $\Psi_1$  are consistent with zero.
- Results lack of significance due to low hyperon statistics.



Quark Matter 2023



### Summary

- The search for the CME and CVE addresses an intrinsic topological property of QCD. We use Event Shape Selection to extrapolate  $\Delta \gamma^{112}$  to zero-flow limit, and use spectator plane  $\Psi_1$
- to suppress the non-flow background.
  - The CME-sensitive  $\Delta \gamma^{112}$  after BKG subtraction is finite (3 $\sigma$ ) at 14.6 and 19.6 GeV. • The data interpretation requires further assessment on the new ESS methodology:  $\circ$  According to AVFD, the method is accurate (3 $\sigma$  signal);
- - $\circ$  According to AMPT, there is over-subtraction of BKG (> 3 $\sigma$  signal).
- $\circ$  At 200 GeV, using ESE with  $\Psi_2$ , low-invariant-mass region appears to have a larger ESE intercept  $(3\sigma)$  than high-mass region. Residual nonflow effects to be assessed. No CVE effects have been observed in Au+Au at 19.6 and 27 GeV.













### Thank you!

## **Analyses Details for Event Shape Selection**

- $\varphi_i$  from TPC hadron (excluding proton)  $|\eta| < 1$
- o q<sup>2</sup>: Event Shape variable for binning event

$$v_{2}\{single(pair)\} = \frac{\langle \cos(2\varphi_{i(p)} - \Psi_{1,\text{EPDe}} - \Psi_{1,\text{EPDw}}) \rangle}{\text{res}_{1,\text{sub}}^{2}}$$



Quark Matter 2023

**ts** 
$$q_2^2\{single(pair)\} = \frac{\left(\sum_{i=1}^N \sin 2\varphi_{i(p)}\right)^2 + \left(\sum_{i=1}^N \cos 2\varphi_{i(p)}\right)^2}{N(1 + N\langle v_{2,s(p)}\rangle)}$$

### • At each single (pair) $q^{2}_{POI}$ bin, measure the selected event averaged observable $v_{2}$ and $\Delta \gamma^{112}$



### **ESS** and Pair v<sub>2</sub>

### • Pair v<sub>2</sub> from adding momenta of two POI particles.



Quark Matter 2023





- Unmixed recipes (a) and (b) cause residual background near zero-flow region
- Mixed recipes have advantage that the  $v_2$  and binning  $q^2$  are less correlated.
  - However, pair v<sub>2</sub> contains true CME signal, which may lead to over subtraction for (d).

### Scenario (c) — pair $q_2$ , single $v_2$ is the optimal solution!







### Simulation for q<sub>B</sub> from Event Shape Engineering

**q**<sub>B</sub> (no POI) \_\_\_\_\_ **v**<sub>2</sub> (POI)

- $\circ\,$  ESE works effectively with mid-rapidity  $q_B\,(|\eta|<0.3)$  and POI (0.3<| $\eta|<1$ )
- The errors become many times larger than those on slide 19







- At 27 GeV, the results from the optimal E large to conclude.
- $\circ$  At 14.6 GeV, the ratio for 20-50% using optimal ESS has a 3 $\sigma$  significance.
- At 7.7 GeV, the current results favor the zero scenario.

Quark Matter 2023

• At 27 GeV, the results from the optimal ESS (c), pair q<sup>2</sup> and single v<sub>2</sub> have uncertainties too

ptimal ESS has a 3σ significance. ero scenario.



### **ESS:** AVFD at different LCC



 AVFD check at different Local Charge Conservation (LCC) tuning confirms that ESS(c) can well restore zero BKG.
 Experiment data LCC is 22%

• Experiment data LCC is 33%



