Imaging the shape of atomic nuclei in high-energy nuclear collisions from STAR

Chunjian Zhang and Jiangyong Jia, for the STAR Collaboration

¹ The collective properties of nuclear structure, such as radii and deformations, leave distinct sig-² natures in the initial and consequently final stages of relativistic heavy-ion collisions. Collisions ³ of deformed nuclear enhance the fluctuations of harmonic flow coefficients v_n and event-wise ⁴ mean transverse momentum $[p_T]$, therefore offering a viable approach to establish clear corre-⁵ spondences between the structure of colliding nuclei and the final state observables.

We present measurements of v_n , $[p_T]$ fluctuations as well as v_n - $[p_T]$ correlations from the 6 STAR experiment. Significant differences are observed for $[p_T]$ fluctuations and v_n - $[p_T]$ correlations between ¹⁹⁷Au+¹⁹⁷Au and ²³⁸U+²³⁸U collisions, which can be quantitatively explained by 8 the large prolate deformation of ²³⁸U with $\beta_{2,U} \sim 0.28$ and $\gamma_U \sim 0$. Striking differences are also observed in isobar collisions of ⁹⁶Ru+⁹⁶Ru and ⁹⁶Zr+⁹⁶Zr, where ratios of many observables 9 10 show significant deviations from unity and exhibit rich patterns as a function of centrality. A 11 comparison with hydrodynamic model simulations suggests a large quadrupole deformation in 12 Ru nucleus with $\beta_{2,Ru} \sim 0.16$ and a large octupole deformation in ⁹⁶Zr nucleus with $\beta_{3,Zr} \sim 0.2$. 13 The non-monotonic dependence of ratios of multiplicity distribution, v_2 , and $[p_T]$ fluctuations 14 in the mid-central collisions also requires a difference in the surface diffuseness between 96 Ru 15 and ⁹⁶Zr in the model calculations. Combining all these observables, we can precisely constrain 16 the parameters associated with various nuclear deformations in isobar nuclei. Building on our 17 pioneering demonstration of nuclear structure effects, we present a more precise quantitative ex-18 traction of the quadrupole and octupole deformation parameters in 96 Ru and 96 Zr nuclei using 19 heavy-ion collisions. 20