⁴ He Production in $\sqrt{s_{NN}} = 3$ GeV Au+Au Collisions

Fengyi Zhao

(for the STAR Collaboration)

October 9, 2024

Abstract

10

11

12

13

14

15

Hypernuclei, bound states of nuclei with one or more hyperons, serve as a natural laboratory to investigate the hyperon-nucleon (YN) interaction. High-baryon density environment can be created by heavy-ion collisions at a collision energy of a few GeV/u, which provides a unique opportunity to study the YN interaction and production mechanism of hypernuclei. Comparison of $^4_\Lambda {\rm He}$ yield with its isobar $^4_\Lambda {\rm H}$ may shed light on the isospin related $\Lambda\text{-t}$ and $\Lambda\text{-}^3 {\rm He}$ interactions.

In this poster, we will present the new results on the $^4_\Lambda \rm{He}$ differential yield as a function of rapidity and transverse momentum. The yield is measured in $\sqrt{s_{NN}}=3$ GeV Au+Au 0-50% central collisions, and the data is collected by the STAR experiment with fixed-target mode. $^4_\Lambda \rm{He}$ is identified via its three-body decay channel $^4_\Lambda \rm{He} \rightarrow ^3 \rm{He} + p + \pi^-$. We found that the rapidity distributions of $^4_\Lambda \rm{He}$ are similar to those of $^4_\Lambda \rm{H}$, and the differential yield ratios of $^4_\Lambda \rm{He}/^4_\Lambda \rm{H}$ are consistent with those of $^3_\Lambda \rm{He}/^4_\Lambda \rm{H}$ are consistent with those of $^3_\Lambda \rm{He}/^4_\Lambda \rm{He}$ are the canonical thermal model.