\documentclass[aps,prc,showpacs,superscriptaddress,floatfix]{revtex4-2} \usepackage{rotating} \usepackage{epsfig} \usepackage{hyperref} \usepackage{color} \usepackage{url} \usepackage{multirow} \usepackage{amsmath} \usepackage{lineno} \linenumbers \usepackage{graphicx} \usepackage[caption=false]{subfig} \graphicspath{ {./plot/}, {./image/} } \DeclareGraphicsExtensions{ .pdf, .png} %------------------------------------------------------------------------------------------------% \begin{document} %------------------------------------------------------------------------------------------------% \title{Investigating Potential Evidence of a Chiral Magnetic Effect Signal in Au+Au Collisions at $\sqrt{s_{\text{NN}}}=200$~GeV at the Relativistic Heavy Ion Collider} \author{Yicheng Feng} \address{Purdue University, West Lafayette, IN 47907} \author{Han-Sheng Li} \address{Purdue University, West Lafayette, IN 47907} \collaboration{for the STAR Collaboration} \date{\today} %------------------------------------------------------------------------------------------------% \begin{abstract} Topological fluctuations of the vacuum gluon field in quantum chromodynamics can induce a chirality imbalance of quarks via quark-gluon interactions. Such a chirality imbalance, under a strong magnetic field, can result in an electric current, a phenomenon called the chiral magnetic effect (CME). We analyze the CME-sensitive charge-dependent azimuthal correlator, $\Delta\gamma$, with respect to the spectator and participant planes, proxied by the harmonic planes reconstructed from spectator neutrons measured by the zero-degree calorimeters (ZDC) and charged tracks measured by the time projection chamber (TPC) in the STAR experiment. The combination of these measurements eliminates the elliptic flow ($v_{2}$)-induced background in the extracted CME-sensitive signal [1]. We remove remaining nonflow contamination by decomposing the measured two-particle elliptic anisotropy into flow and nonflow and by estimating the genuine three-particle correlation contribution using the HIJING and Pythia models, similar to methods employed in recent isobar post-blind analysis~[2,3]. We also analyze the TPC and ZDC measurements of $\Delta\gamma$, inclusive as well as differentially in pair invariant mass, using the event-shape engineering method with elliptic anisotropy $\vec{q}_{2}$ vector computed in a phase space different from that of particles of interest to avoid autocorrelations. We report measurement suggestive of a possible CME signal in Au+Au collisions at nucleon-nucleon center-of-mass energy of $\sqrt{s_{\text{NN}}} = 200$ GeV at BNL’s Relativistic Heavy Ion Collider. \vspace{0.5cm} \noindent[1] STAR Collaboration, Phys.~Rev.~Lett.~128 (2022) 092301, \textit{``Search for the Chiral Magnetic Effect via Charge-Dependent Azimuthal Correlations Relative to Spectator and Participant Planes in Au+Au Collisions at $\sqrt{s_{\text{NN}}}$ =\, 200\,GeV''} \noindent[2] STAR Collaboration, Phys.~Rev.~Res.~6 (2024) L032005, \textit{``Upper limit on the chiral magnetic effect in isobar collisions at the Relativistic Heavy-Ion Collider''} \noindent[3] STAR Collaboration, Phys.~Rev.~C 110 (2024) 014905, \textit{``Estimate of background baseline and upper limit on the chiral magnetic effect in isobar collisions at $\sqrt{s_{\text{NN}}}$=200 GeV at the BNL Relativistic Heavy Ion Collider''} \end{abstract} %------------------------------------------------------------------------------------------------% \maketitle %------------------------------------------------------------------------------------------------% \end{document}