Exploring Electromagnetic-field Effects using Charge-Dependent Directed Flow from BES-II Data at STAR

1

2

3

5

6

Aditya Prasad Dash (For the STAR Collaboration) Department of Physics and Astronomy, University of California Los Angeles

Charge-dependent directed flow can reveal the influence of electromagnetic fields in heavy-ion collisions. For instance, Faraday in-9 duction is predicted to contribute negatively to $\Delta(dv_1/dy)$, defined 10 as the difference in the slope of rapidity-odd directed flow (dv_1/dy) , 11 between positively and negatively charged particles. Recent STAR 12 data from peripheral Au+Au collisions at $\sqrt{s_{NN}} = 200$ and 27 GeV 13 supported this scenario. In this poster, we present the STAR BES-II 14 results of v_1 and Δv_1 for π^{\pm} , K^{\pm} , $p(\bar{p})$ and $\Lambda(\bar{\Lambda})$ as functions of ra-15 pidity, transverse momentum (p_T) , and centrality at midrapidity in 16 Au+Au collisions at $\sqrt{s_{NN}} = 19.6, 17.3, 14.6, 11.5, 9.2$ and 7.7 GeV. 17 In peripheral collisions, the sign of $\Delta(dv_1/dy)$ is consistent with the 18 expectation from the dominance of Faraday+Coulomb effect over 19 Hall+transported quark effect, and $\Delta(dv_1/dy)$ becomes more nega-20 tive at lower collision energies, as expected from a longer lifetime of 21 the electromagnetic field and/or a shorter lifetime of the fireball at 22 these energies. We also discuss the expected electromagnetic-field 23 effects on the constituent quarks in Λ and Λ , and consequently on 24 their $\Delta(dv_1/dy)$ within the coalescence framework. 25

1