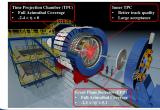


First Measurements of Hyper-Nucleus ³_AH **Global Polarization in Au+Au Collisions at STAR**

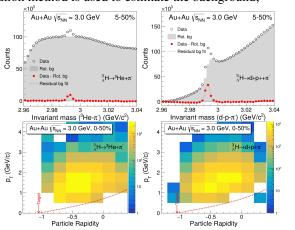
Chenlu Hu (huchenlu@ucas.ac.cn), for the STAR Collaboration University of Chinese Academy of Sciences


Abstract

The large angular momentum generated in non-central heavy-ion collisions contributes to the formation of vorticity within the medium, which subsequently induces polarization of particles with non-zero spin. In regions of high baryon density, the enhanced production of hypernucleus ${}^{A}_{A}H$ makes their polarization measurement feasible, shedding light on its spin structure and production mechanism [1]. About 2 billion events collected during 2021 by STAR FXT offer a unique opportunity to investigate this using 3 GeV Au+Au collisions. In this poster, we will present the feasibility of measuring the global polarization of ${}^{A}_{A}H$ via its two-body and three-body decays at 3 GeV in Au+Au collisions using data from the STAR experiment.

Motivation

- Spin structure of hypernuclei [1]; ${}^{3}_{A}H(\frac{1}{2}^{+}, triplet)$ ${}^{3}_{A}H(\frac{1}{2}^{+}, singlet)$ ${}^{3}_{A}H(\frac{3}{2}^{+}, triplet)$ ${}^{p_{decay}}$ ${}^{p_{decay}}$
- Production mechanism of hypernuclei in heavy-ion collisions;
 Role of nucleon-nucleon (N-N) and hyperon-nucleon (Y-
 - N) interactions in nuclei formation;


Experimental Setup

- The STAR detector upgrade
 - Inner TPC
 - Better track quality
 - Large acceptance
 - EPD $(2.1 < |\eta| < 5.1)$

Particle Reconstruction

³_AH are reconstructed by 2-body (³_ΛH → ³He + π⁻) and 3-body (³_ΛH → d + p + π⁻) decay channels using KFParticle package;
Rotation method is used to estimate the background;

Invariant mass distribution (upper panel) and acceptance (lower panel) of ${}^{3}_{A}$ H 2-body decay (left panel) and 3-body decay (right panel)

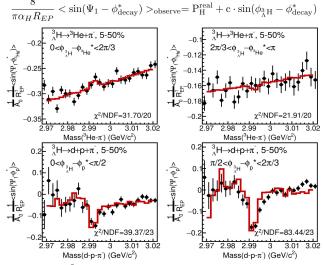
References

Kai-Jia Sun et al., Phys.Rev.Lett. 134 (2025) 2, 022301
 STAR Collaboration, Phys.Rev.C 76 (2007) 024915
 STAR Collaboration, Phys.Rev.C 104 (2021) 6, L061901

Supported in part by the

Analysis Method Global polarization: n

Global polarization: measured from the azimuthal distribution of daughters in the ${}^{3}_{A}$ H rest frame relative to the reaction plane:


$$P_H = \frac{8}{\pi \alpha_H} \frac{1}{A_0} \frac{<\sin(\Psi_1 - \phi^*_{\text{decay}})>}{Res(\Psi_1)}$$

here, $\alpha_{\rm H}$ is the ${}^{3}_{\Lambda}$ H decay constant [1], $\phi^{*}_{\rm decay}$ is the azimuthal distribution of daughters in the ${}^{3}_{\Lambda}$ H rest frame, for 2-body decay, using ³He, for 3-body decay, using proton, A_0 is a detector acceptance correction factor, $A_0 = \langle \sin \theta^{*}_{\rm decay} \rangle$ [2].

- Event plane resolution: measured by 3-sub events (using EPD and TPC);
- Invariant mass method: extract the polarization signal (for ³_ΛH 3-body decay, include correction for correlated background (d+Λ) contribution);

$$P_H(M_{inv}) = \frac{S}{S+B} P_H^{Sig} + \frac{B}{S+B} P_H^{Bkg}$$

Flow-driven contributions subtracted in P_H extraction [3], here the coefficient c depends on v_1 ;

Raw distributions of ${}^{3}_{A}$ H 2-body decay (upper panel) and 3-body decay (lower panel) as a function of invariant mass in different bins of emission angle ($\phi_{3H} - \phi_{decay}^{*}$)

Summary

- Good signal of ${}^{3}_{\Lambda}$ H in mid-central (5-50%) Au+Au collisions;
- Methodology is being refined, correction of polarization (acceptance and purity) and estimation of systematic uncertainty are ongoing;

The STAR Collaboration https://drupal.star.bnl.gov/STAR/presentations

