

Measuring the Global Spin Alignment of Vector Mesons in Heavy Ion Collisions by STAR

C.W. Robertson (rober558@purde.edu), Purdue University for the STAR Collaboration

[1] M. Abdallah et al. (STAR Collaboration), Nature 614, 244–248 (2022).

• Spin alignment ρ_{00} , θ^* dependent efficiency, and elliptic flow v₂ are likely

Raw Data Distributions

QM 2025

entangled

• We present another method to measure ρ_{00} , by using the signal/noise ratio from invariant mass distribution in a fit to the $\langle \cos^2 \theta^* \rangle$ vs. mass.

Signal Extraction

- Invariant mass distribution of kaon pairs (left) and $\langle \cos^2 \theta^* \rangle$ vs. mass (right)
- We use the signal/noise ratio from left plot to fit the $\langle \cos^2 \theta^* \rangle$ vs. mass for ρ_{obs}

Future Work: Corrections

Data-driven correction procedure for detector effects:

- Use published φ meson p_t spectrum (left panel blue points) and $v_2(p_t)$ to estimate the "true" ($\cos^2 \theta^*$) for combinatorial background of decay kaons (right panel green points).
- Get decay kaon spectrum in data via peak sideband; scale measured kaons to that spectrum in $(p_t, \phi - \psi)$; get $\langle \cos^2 \theta^* \rangle$ of those scaled kaons in data. This is the background $\langle \cos^2 \theta^* \rangle$ affected by detector effects.

Correct for Event Plane Resolution: $\rho_{00} = \frac{4}{(1+3R)} \left(\rho_{obs} - \frac{1}{3} \right) + \frac{1}{3}$

EP resolution at 200 GeV ~ 0.69, 62.4 GeV ~ .57, at 39 GeV ~ .55, and at 27 GeV ~ .51

Systematic Uncertainty

- Signal is only a few percent and greatly depends on the background modeling.
- Will assess systematic uncertainties from varying background functions in fits to $\langle \cos^2 \theta^* \rangle$ vs. mass and other sources

• The ratio of two is the correction factor, to be applied to φ meson ρ_{00}

Summary

• Use signal/noise ratio to Fit $\langle \cos^2 \theta^* \rangle$ vs. invariant mass to get φ meson raw ρ_{00}

• φ meson raw ρ_{00} results will be obtained at various beam energies

• Future work to correct for detector effects

The STAR Collaboration

