

Proton High-Order Cumulants Results from the STAR Fixed-Target Program

Zachary Sweger University of California, Davis (For the STAR Collaboration) Quark Matter 2025, Frankfurt, Germany

Supported in part by

Office of Science

STAR Collaboration

Overview

- QCD Critical Fluctuations
- Beam Energy Scan II Results
- STAR Fixed-Target Program
- New Fixed-Target Results

--- Hydro EV -0.5<v<0.5 HRG CE UrQMD -0.5<y<0.5 UrQMD -0.5<y-y 8 910 Energy VS_{NN} (GeV)

3

B. Mohanty, N. Xu, arXiv:2101.09210

4

B. Mohanty, N. Xu, arXiv:2101.09210

5

B. Mohanty, N. Xu, arXiv:2101.09210

B. Mohanty, N. Xu, arXiv:2101.09210

Quark Matter

7

Quark Matter

B. Mohanty, N. Xu, arXiv:2101.09210

- Distribution of net-baryon number is expected to fluctuate near a critical point • We measure events sorted by centrality

https://www.bnl.gov/newsroom/news.php?a=214492

Zachary Sweger

9/4/2025

Fluctuations in baryon number

Fluctuations in baryon number

- We measure events sorted by centrality
- Count the number of protons (N_p) , antiprotons (N_{pbar}) , net-protons (N_p-N_{pbar})

https://www.bnl.gov/newsroom/news.php?a=214492

9/4/2025

• Distribution of net-baryon number is expected to fluctuate near a critical point

0.1 Au+Au Collisions at RHIC √s_{NN} (GeV) 0-5% Centrality, lyl < 0.5 +7.7 $0.4 < p_{_{T}} < 2.0 \; GeV/c$ Normalized Number of Events 0.08 **4** 9.2 o 11.5 **STAR** 014.6 0.06 **17.3** 19.6 **×**27 0.04 0.02 20 30 50 10 Net-proton ($\Delta N_p = N_p - N_{\overline{p}}$)

> A. Pandav (STAR collaboration), talk at CPOD 2024, https:// conferences.lbl.gov/event/1376/contributions/8772/

Quark Matter

- We measure events sorted by centrality
- Distribution of net-baryon number is expected to fluctuate near a critical point
- Count the number of protons (N_p) , antiprotons (N_{pbar}) , net-protons (N_p-N_{pbar}) • Measure the mean, variance, skewness, kurtosis...

cumulants

$$C_{1} = \langle N \rangle \equiv \mu \text{ [mean]}$$

$$C_{2} = \langle (N - \mu)^{2} \rangle \equiv \sigma^{2} \text{ [variance]}$$

$$C_{3} = \langle (N - \mu)^{3} \rangle$$

$$C_{4} = \langle (N - \mu)^{4} \rangle - 3 \langle (N - \mu)^{2} \rangle^{2}$$

standardized moments

$$S\sigma = C_3/C_2$$
 [skewness]
 $\kappa\sigma^2 = C_4/C_2$ [excess kurtosis]

Fluctuations in baryon number

A. Pandav (STAR collaboration), talk at CPOD 2024, https:// conferences.lbl.gov/event/1376/contributions/8772/

Fluctuations in Proximity to Critical Point

QCD Phase Diagram

M. Stephanov. J. Physics G.: Nucl. Part. Phys. 38 (2011) 124147

Predicted fluctuation in kurtosis near critical point

Fluctuations in Proximity to Critical Point

QCD Phase Diagram

M. Stephanov. J. Physics G.: Nucl. Part. Phys. 38 (2011) 124147

Predicted fluctuation in kurtosis near critical point

M. Stephanov. J. Physics G.: Nucl. Part. Phys. 38 (2011) 124147

Quark Matter

Comparison to Published BES-I Results

STAR, Phys. Rev. Lett. 128, 202303 (2022); Phys.Rev.C 107.024908 (2023). Phys. Rev. Lett. 126, 092301 (2021); Phys. Rev. C 104, 024902 (2021)

Zachary Sweger

9/4/2025

Quark Matter

STAR Beam-Energy Scan II Results Recent results from STAR BES-II high-moments shown at CPOD 2024

STAR collaboration, arXiv:2504.00817

Quark Matter

STAR Beam-Energy Scan II Results • Recent results from STAR BES-II high-moments shown at CPOD 2024 Deviation from non-critical baselines at 19.6 GeV in C_4/C_2 at 2-5 σ

STAR collaboration, arXiv:2504.00817

Quark Matter

Recent work excludes at 2σ level, CP at $\mu_B < 450$ MeV (*arXiv:2502.10267, 2025*)

√s (GeV)	Chemical Potential µ _B (MeV)
3.2	697
3.5	666
3.9	632
4.5	589

Theory Estimates for Critical-Point Location Recent work excludes at 2σ level, CP at $\mu_B < 450$ MeV (*arXiv:2502.10267, 2025*) From Quark Matter 2023:

√s (GeV)	Chemical Potential µ _B (MeV)
3.2	697
3.5	666
3.9	632
4.5	589

√s (GeV)	Chemical Potential µ _B (MeV)
3.2	697
3.5	666
3.9	632
4.5	589

From Quark Matter 2023:

for the location of CEP: $600 \le \mu_B \le 650$ MeV"

Wei-jie Fu, "Baryon number Fluctuations at high baryon density" Quark Matter (2023)

Zachary Sweger

9/4/2025

Recent work excludes at 2σ level, CP at $\mu_B < 450$ MeV (*arXiv:2502.10267, 2025*)

• W. Fu: "Recent studies of QCD phase structure... have shown convergent estimate

√s (GeV)	Chemical Potential µ _B (MeV)
3.2	697
3.5	666
3.9	632
4.5	589

From Quark Matter 2023:

- for the location of CEP: $600 \le \mu_B \le 650$ MeV"

Wei-jie Fu, "Baryon number Fluctuations at high baryon density" Quark Matter (2023)

9/4/2025

Recent work excludes at 2σ level, CP at μ_{B} <450 MeV (*arXiv:2502.10267, 2025*)

• W. Fu: "Recent studies of QCD phase structure... have shown convergent estimate

• M. H. Teixeira: holographic Bayesian analysis gives $560 \le \mu_B \le 625$ MeV

Quark Matter

√s (GeV)	Chemical Potential µ _B (MeV)
3.2	697
3.5	666
3.9	632
4.5	589

From Quark Matter 2023:

9/4/2025

Recent work excludes at 2σ level, CP at μ_{B} <450 MeV (*arXiv:2502.10267, 2025*)

The STAR Fixed-Target Program

Zachary Sweger

9/4/2025

Quark Matter

Fixed-Target Collisions at STAR Fixed-Target (FXT) Program at STAR

- Test run with gold target in 2015
- First physics runs at $\sqrt{s_{NN}} = 3.0$ GeV and 7.2 GeV in 2018
- Now have data at 3.0–7.7 GeV

Challenges for FXT

- Shifting asymmetric acceptance w.r.t. midrapidity with collision energy
- At 7.7 GeV, midrapidity moves to edge of Time Projection Chamber (TPC) acceptance

This Fixed-Target Data

• This analysis looks at three datasets: 3.2, 3.5, 3.9 GeV

Data Set Details							
Nominal $\sqrt{s_{NN}}$ (GeV)	Precision $\sqrt{s_{NN}}$ (GeV)	Beam Energy (GeV)	# Good Events	CoM Rapidity	Chemical Pot. $\mu_B \text{ (MeV)}$		
3.2	3.208	4.593	$201\mathrm{M}$	1.139	697		
3.5	3.531	5.761	116M	1.254	666		
3.9	3.918	7.309	117M	1.375	632		

- We select events with vertex centered on target
- $V_z \sim 200 cm$
- $V_y \sim -2.2$ cm below beam-pipe center

Fixed-Target High-Moments Analysis Window

- Challenging acceptance: detector gaps simulated in UrQMD baseline Contamination from pions and deuterons limited
- >90% proton purity in each region of phase space

Fixed-Target High-Moments Analysis Window

- Challenging acceptance: detector gaps simulated in UrQMD baseline Contamination from pions and deuterons limited
- >90% proton purity in each region of phase space

Proton Identification

- identify protons

9/4/2025

• When pion and deuteron contamination is low, we can use energy-loss in the TPC to

When the proton purity dips below 90%, we can use time-of-flight for PID

Quark Matter

Endcap Time-of-Flight

ETOF Details

- CBM-TOF group provided ETOF
- Provides precision particle identification over 1.55< η <2.2
- Collected data for Fixed-Target Program

9/4/2025

- Out-of-Bucket Pileup In the Fixed-Target Program, only every 10th bunch was filled RHIC clock is 10 MHz, so each bucket is 100ns apart
- Each filled bucket arrives every 1µs
- TPC drift velocity is $5.5 \text{ cm/}\mu\text{s}$
- Pileup tracks from next filled bucket appear shifted by 5.5 cm

With a 3cm DCA cut, high-rapidity pileup tracks would be counted in primary vertex

Quark Matter

Out-of-Bucket Pileup

- with DCA<3cm vs. multiplicity with DCA<1cm
- Additionally, iTPC upgrade after 2018 allows us to decrease our DCA cut to 1cm
- This is different from the published 3 GeV cumulants (*PRL 126 092301*)

We can remove much of this pileup by removing outliers in distribution of multiplicity

In-Bucket Pileup

Pileup cannot be corrected for when using time-of-flight (PRC 111, 034902) •

Quark Matter

In-Bucket Pileup

- Pileup cannot be corrected for when using time-of-flight (PRC 111, 034902)
- At 3.2 GeV, no time-of-flight is used, so we can correct for pileup

9/4/2025

Quark Matter

In-Bucket Pileup

- Pileup cannot be corrected for when using time-of-flight (PRC 111, 034902)
- At 3.2 GeV, no time-of-flight is used, so we can correct for pileup
- TPC vs multiplicity observed by TOF

At 3.5 & 3.9 GeV, pileup is rejected by rejecting outliers in the multiplicity observed by

Fixed-Target Multiplicity for Centrality Determination In fixed-target, multiplicity includes tracks at all η • FXTMult3: charged-particle multiplicity excluding protons Distance of closest approach (DCA) to vertex of less than 1cm

- •
- Negatively-charged tracks
- Low-momentum positive tracks, identified as non-protons • Multiplicity fit with Glauber + 2-component model for centrality definition

Zachary Sweger

9/4/2025

Quark Matter

Cumulants vs. Centrality than UrQMD prediction

- Central C₃ is notably larger than UrQMD prediction
- Central C₄ is consistent with UrQMD

9/4/2025

Quark Matter

Cumulant Ratios vs. Centrality

Zachary Sweger

9/4/2025

Au+Au Collisions at RHIC

Quark Matter

Fixed-target C_2/C_1 and κ_2/κ_1 monotonically decrease, as predicted by UrQMD

Quark Matter

Fixed-target C_2/C_1 and κ_2/κ_1 monotonically decrease, as predicted by UrQMD Compare against red UrQMD band with half-midrapidity

- Fixed-target C_2/C_1 and κ_2/κ_1 monotonically decrease, as predicted by UrQMD
- Compare against red UrQMD band with half-midrapidity
- Continuation of full midrapidity UrQMD (-0.5<y<0.5) shown in blue

- Fixed-target C_2/C_1 and κ_2/κ_1 monotonically decrease, as predicted by UrQMD
- Compare against red UrQMD band with half-midrapidity window
- Continuation of full midrapidity UrQMD (-0.5<y<0.5) shown in blue
 - Significant enhancement of cumulants above baseline

C_3/C_1 shows no strong energy dependence, similar to UrQMD

- C_3/C_1 shows no strong energy dependence, similar to UrQMD
- κ_3/κ_1 monotonically increases, as predicted

- C_3/C_1 shows no strong energy dependence, similar to UrQMD
- κ_3/κ_1 monotonically increases, as predicted
- Significant deviations from non-critical baseline at C_3/C_1 and κ_3/κ_1

- C_4/C_2 right on baseline
- κ_4/κ_1 shows no strong energy dependence within uncertainties

- C_4/C_2 right on baseline
- κ_4/κ_1 shows no strong energy dependence within uncertainties

- Central C_4/C_2 is consistent with UrQMD -0.5<y-y_{CM}<0
- Systematics are greatly reduced relative to 3.0 GeV (*PRL 126, 092301*)

Energy Scan of C_4/C_2

Significance of STAR Fixed-Target Results

- Fixed-Target results have most significant deviations at κ_2/κ_1 and κ_3/κ_1
- Fourth-order deviations are $<3\sigma$

Deviations 3 -3 of -5 Significance 3 0 -3 -5 2

Quark Matter

- STAR has measured central proton high-order (factorial) cumulants and 3.9 GeV
- Systematic uncertainty at C_4/C_2 is greatly reduced compared with the published 3 GeV result
- Central C_4/C_2 is consistent with non-critical UrQMD baseline
- Significant deviations observed at other orders
- Cumulants and factorial cumulants are monotonic or the monotonicity is inconclusive

Conclusions

moments up to fourth order in fixed-target Au+Au collisions at 3.2, 3.5,

Outlook

- 3 GeV was re-collected in 2021 after the iTPC upgrade and the addition of ETOF
- Full midrapidity (-0.5<y-y_{CM}<0.5) analysis can now be performed at 3 GeV, and systematic uncertainty may be reduced
- STAR may extract high-order cumulants at 4.5 GeV, but with larger acceptance gaps
- Interesting behavior at lower orders may be further explored by the CBM experiment at 2.9 4.9 GeV

Zachary Sweger

9/4/2025

Quark Matter

