Directed flow of ${}^{4}_{\Lambda}$ He and ${}^{5}_{\Lambda}$ He in Au+Au collisions at $\sqrt{s_{NN}} = 3.0$ GeV at RHIC

Junyi Han (for the STAR collaboration) 1,2

¹Central China Normal University ²Heidelberg University

November 13, 2024

Studying hyper-nuclei yields and their collectivity can shed light on their production mechanism as well as the hyperon-nucleon interactions. Heavy-ion collisions from the RHIC beam energy scan phase II (BES-II) provide an unique opportunity to understand these at high baryon densities.

In this poster, we present the first measurement of directed flow (v_1) for ${}^4_{\Lambda}$ He and ${}^5_{\Lambda}$ He from fixed-target Au+Au collisions at $\sqrt{s_{NN}} = 3.0$ GeV, made possible by the collection of 2 billion minimum-bias events by the STAR experiment during BES-II. The rapidity (y) dependence of the ${}^4_{\Lambda}$ He and ${}^5_{\Lambda}$ He v_1 are studied in mid-central collisions. The results are compared to that of other hyper-nuclei and light-nuclei. Finally, these results are compared with calculations from a hadronic transport model.