

Measurement of ϕ meson directed flow in $\sqrt{s_{NN}}$ =3-19.6 GeV Au+Au collisions from RHIC-STAR

Guangyu Zheng (zhengguangyu23@mails.ucas.ac.cn) for the STAR Collaboration University of Chinese Academy of Sciences

Abstract

Directed flow (v_1) has been suggested as a sensitive probe of the equation of state of hot and dense matter. The hadronic cross section of ϕ mesons is smaller than that of light flavor hadrons, allowing them to provide information about the early stage of heavy-ion collisions. In this poster, we present measurements of ϕ meson directed flow in $\sqrt{s_{NN}} = 3-19.6$ GeV Au+Au collisions from the RHIC Beam Energy Scan Phase - II (BES-II) by STAR . Additionally, we present directed flow measurements for protons (p), kaons (K), and Λ particles, comparing them to the ϕ meson. The experimental results are compared with theoretical calculations from the hadronic transport model JAM2[1] model.

Introduction:

 meson has relatively small hadronic interaction cross sections and it can be used to study the QGP dynamics at early times giving access the the degrees-of-freedom.

- The v_1 slope of ϕ meson seems larger in magnitude than other mesons and changes sign below 11.5 GeV[2].
- BES-II data has higher statistics, better detector performance and a larger range of $\sqrt{s_{NN}}$ than previous data.

Experimental Setup:

- ➤ The STAR Detector
- 2π azimuthal coverage
 Large acceptance
- Excellent PID
- ▹ BES-II detector upgrade
- Inner TPC , endcap TOF
- EPD (2.1 < |η| < 5.1)

meson v₁ Results:

- v₁ extraction range
 0.6< p_T < 1.8 GeV/c for 3-
 4.5 GeV.
- $0.15 < p_T < 10$ GeV/c for 7.7-19.6 GeV. • Fitting function for v_1
- slope Linear for 3- 4.5 GeV
 - $v_1(y) = F * y$ Cubic for 7.7- 19.6 GeV
 - $v_1(y) = F * y + C * y^3$ F is the v₁ slope
 - Fitting Range: |y|<1

- •Background from mixed events
- •1st order event plane reconstructed by EPD \succ v₁ extraction: invariant mass method

$$v_{n}^{\text{sig+Bg}}\left(M_{\text{inv}}\right) = \left\langle \cos\left[n\left(\phi - \Psi_{1}\right)\right]_{M_{\text{inv}}}/R_{n}\right\rangle$$
$$v_{n}^{\text{sig+Bg}}\left(M_{\text{inv}}\right) = v_{n}^{\text{sig}}\frac{\text{Sig}}{\text{Sig+Bg}}\left(M_{\text{inv}}\right) + v_{n}^{\text{Bg}}\left(M_{\text{inv}}\right)\frac{\text{Bg}}{\text{Sig+Bg}}\left(M_{\text{inv}}\right)$$

. 1

/ Γ.

 $\underbrace{\mathsf{E}_{\text{sec}}}_{\text{sec}} \underbrace{\mathsf{I}_{\text{off}}}_{1 \text{ of } 1.02 \text{ of } 03 \text{ of } 41.05 \text{ of } 1.06 \text{ of } 1.07 \text{ of } v_n^{\text{Bg}}}\left(M_{\text{inv}}\right) = p_0 + p_1 M_{\text{inv}}$ $\underbrace{\mathsf{m}_{\text{vec}}[\text{GeV}(c^2]}_{\text{off}}$

v_n value is the sum of signal and background contributions.
 Background term was parameterized with the polynominal.

Energy dependence of v₁ Slope:

- The v_1 slope of ϕ mesons shows similar trends to that of proton and Λ and is consistent with that of the Kaon above 9.2 GeV.
- JAM2 Cascade mode can qualitatively describe the trend for φ meson above 7.7 GeV, but a momentum dependent mean field potential with κ=380MeV is needed at 4.5 GeV and below.

Summary:

- v_1 Measurement of φ meson in Au + Au collisions at 3 GeV 19.6 GeV.
- JAM2 Cascade mode can qualitatively describe the trend above 7.7 GeV, but need momentum dependent mean field potential with $\kappa{=}380 \text{MeV}$ at 3.9 GeV and below.

References:

 Y. Nara and A. Ohnishi, Phys. Rev. C 105, 014911 (2022), 2109.07594.
 M. S. Abdallah et al. (STAR), Phys. Lett. B 827, 137003 (2022), 2108.00908.

Supported in part by the U.S. DEPARTMENT OF FNFRCY

The STAR Collaboration https://drupal.star.bnl.gov/STAR/presentations

