

Directed flow of ${}^{4}_{\Lambda}$ He and ${}^{5}_{\Lambda}$ He in Au+Au Collisions at $\sqrt{s_{NN}}$ = 3.0 GeV at STAR

Junyi Han^{1,2} (JYHan@mails.ccnu.edu.cn), for the STAR Collaboration Quark Matter 2025 ¹Central China Normal University ²Heidelberg University

Abstract

Studying hyper-nuclei yields and their collectivity can shed light on their production mechanism as well as the hyperon-nucleon interactions. Heavy-ion collisions from the RHIC beam energy scan phase II (BES-II) provide a unique opportunity to understand these at high baryon density.

In this poster, we will present the first measurement of directed flow (v₁) for $^{4}_{\Lambda}$ He and $^{5}_{\Lambda}$ He from fixed-target Au+Au collisions at $\sqrt{s_{NN}}$ = 3.0 GeV, made possible by the collection of 2 billion minimum-bias events by the STAR experiment during BES-II. The rapidity dependence of the $^{4}_{\Lambda}$ He and $^{5}_{\Lambda}$ He v₁ are studied in mid-central collisions. The results are compared to that of other hyper-nuclei and light nuclei.

Directed flow

E

The particle differential distribution can be written in the form of a Fourier series, directed $flow(v_1)$ is the first expansion coefficient:

$$\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} (1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \psi)))$$

• Collective flow is sensitive to the equation of state of nuclear matter. Directed flow provides a good opportunity to explore hyper-nuclei production mechanism.

Light- and Hyper-Nuclei Acceptance

□ Collective flow of light nuclei and hyper-nuclei are calculated within the selected p_T/A range as indicated by the boxes.

Directed flow Results

□ Directed flow measured with invariant mass method. Light nuclei results are represented by open markers, and hyper-nuclei are solid markers.

dependence in $v_1(y)$ distribution

both for light nuclei and hyper-

3.0 GeV (2021) Au+Au ntrality: 5-4 5 He ▼ ³He ¢ d □ ⁴He

Reference

nuclei.

Shows mass number

[1] B.Abelev et al. Phys. Rev. Lett. 111, 232302(2013)

- [2] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998)
- [3]. KF Particle Finder: M. Zyzak, Dissertation thesis, Goethe University of Frankfurt, 2016. [4]. H. Masui et al., Nucl. Instrum. Methods Phys. Res. A 833, 181 (2016)

Office of

Science

⁴_AHe and ⁵_AHe Reconstruction

STAR Detector

The STAR detector has full azimuthal coverage, and tracking

the iTPC and eTOF upgrades.

plane reconstruction covers $2.1 < |\eta| < 5.1$.

 \square ⁴_{Λ}He and ⁵_{Λ}He are reconstructed with KFParticle package based on Kalman filter method to improve signal significance.

v₁ slope mass dependence

- **D** The $dv_1/dy|_{y=0}$ of the light nuclei is obtained by fitting $v_1(y)$ with a first-order plus third-order function, while that of the hyper-nuclei is obtained by fitting a first-order function.
- \square The $dv_1/dy|_{y=0}$ ($dv_1/dy|_{y=0}$ /mass) vs. mass shows mass ordering both for light nuclei and hyper-nuclei.

Conclusion

- \Box First measurements of directed flow of ${}^{4}_{\Lambda}$ He and ${}^{5}_{\Lambda}$ He in Au+Au collisions at $\sqrt{s_{NN}} = 3.0 \text{ GeV}.$
- \square Mass ordering of hyper-nuclei v₁ slope at mid-rapidity are observed, v₁ slopes of hyper-nuclei are smaller than that of light nuclei.

The STAR Collaboration

