

Light Nuclei and Hyper-Nuclei Directed Flow in $\sqrt{s_{NN}}$ = 3.0-4.5 GeV Au+Au Collisions at STAR

Junyi Han^{1,2} (JYHan@mails.ccnu.edu.cn), for the STAR Collaboration ¹Central China Normal University ²Heidelberg University

Abstract

Measurements of collective flow of light and hyper-nuclei in heavy-ion collisions at high baryon density are important for understanding the formation mechanism of light nuclei and hyper-nuclei.

In this poster, we will present the results on energy and particle mass dependence of mid-rapidity directed flow (v₁) of hypernuclei(Λ , ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H) and light nuclei(p, d, t, 3 He, 4 He) in mid-central Au+Au collisions at $\sqrt{s_{NN}}$ from 3.0 to 4.5 GeV. The mid-rapidity v₁ slope of hyper-nuclei shows a similar energy and particle mass dependence to that of light nuclei. These new results are compared to hadronic transport model calculations.

Motivation

- Light nuclei and hyper-nuclei production are enhanced in the high baryon density region.^{[1][2]}
- Light nuclei and hyper-nuclei properties provide important information about N(nucleon)-N and Y(hyperon)-N interactions.

Particle Identification

1.5

Energy dependence of v₁

25

-0.5

0.5

p/q (GeV/c)

(keV)

EEMC Magnet MTD BEMC TOF

□ The STAR detector has full azimuthal coverage, and tracking and PID coverage for $|\eta| < 1.5$ with the iTPC and eTOF upgrades. The EPD, which is used for event-plane reconstruction covers $2.1 < |\eta| < 5.1$.

Hyper-Nuclei Reconstruction

Hyper-Nuclei are reconstructed with KFParticle package^[4] based on Kalman filter method to improve signal significance.

Acceptance

■ Collective flow of light- and hyper-nuclei are calculated within the selected *p*_T/A range as indicated by the boxes.

□ Light nuclei and hyper-nuclei have good acceptance in mid-rapidity region.

Mass dependence of v₁

- □ The dv₁/dy|_{y=0} of the light nuclei is obtained by fitting v₁(y) with a firstorder plus third-order function, while that of the hyper-nuclei is obtained by fitting a first-order function.
- The v₁ slope dv₁/dy at y=0 for both light and hyper-nuclei(solid markers) are scaled with atomic mass number(A) and/or particle mass.

Reference

Phys. Lett. B697,203(2011)
Phys. Lett. B714, 85(2012)
Phys. Rev. C 58, 1671 (1998).
KF Particle Finder: M. Zyzak, Dissertation thesis, Goethe University of Frankfurt, 2016.
Nucl. Instrum. Methods Phys. Res. A 833, 181 (2016).
Phys. Rev. Lett. 130, 212301(2023).
Phys. Lett. B 827, 136941 (2022).
Phys. Rev. C 106, 044902 (2022).

Au+Au Collisions at RHI $\sqrt{s_{NN}} = 3.2 \text{ GeV}$

> 0 1 p/q (GeV/c)

As the collision energy increases, the mid-rapidity v₁ slope of light nuclei and hyper-nuclei decreases, but hyper-nuclei does not have strong energy dependence.

Good PID capability based on TPC and TOF information.

Conclusion

- □ Light nuclei and hyper-nuclei dv₁/dy exhibits a clear dependence on mass dependence.
- Hadronic transport model (JAM2 mean field + Coalescence) calculations for mid-rapidity v₁ are consistent with observed dependences on both mass and collision energy.

Supported in part by the

