

Beam-Energy Dependence of Baryon Directed Flow in Au + Au Collisions at RHIC-STAR

Zhuo Wang (wzlk@mails.ccnu.edu.cn), for the STAR Collaboration Central China Normal University

Abstract

Anisotropic collective flow provides valuable information about the evolution of nuclear matter in the early stages of collisions and is one of the commonly used observables in high-energy heavy ion collisions. The final-state momentum-space angular distribution of the first harmonic coefficient in the Fourier expansion, relative to the reaction plane, is referred to as directed flow v1. The results of BES-I show that the directed flow of baryons exhibits a extremum at around 20 GeV, which may serve as a signal of a phase transition. The results from BES-II, with improved statistics, can improve the precision of these measurements. In this poster, we will present the energy dependence of p and A v1 in Au + Au collisions at $\sqrt{s_{NN}}$ =7.7, 9.2, 11.5, 14.5, 17.3, and 19.6 GeV.

Motivation

v₁ slope of net-proton and net-A show a minimum value when collision energy is around 10-20 GeV.

The slope of proton and Λ shows a sign change between 11.5 and 14.5 GeV.

Ref : L. Adamczyk et al.(STAR Collaboration), Phys. Rev. Lett. 120, 062301 (2018)

At the same centrality,

the resolution of the first-order event plane

decreases as the

energy increases.

The combination of

TPC and TOF provide excellent particle

identification capability.

Event plane and PID

Event Plane Resolution

Particle Identification

Conclusions

- Proton and net-proton v₁ slopes show sign inversion between 7.7-9.2 GeV and a minimum near 15 GeV at 10-40% centrality.
- Λ and net- Λ exhibit similar v₁ slope trends to protons, with sign change occurring between 9.2-11.5 GeV.

Supported in part by the

Office of Science

Experimental Setup

EPD & All are in data-taking for BES-I efficiency Modest rate

The TPC and TOF are used for particle identification; EPD is used for event plane reconstruction.

Results

19.6 (GeV) 0.4 < pt < 2.0GeV -0.5 ≤ y < 0.5 • p Θp 10-40% Au+ ΠT

The directed flow decreases as the energy increases.

 \geq The v_1 slope of both the proton and the Λ varies nonmonotonically with energy.

