

Investigating system size dependence of strange hadron production at 200 GeV at STAR

Xiongxiong Xu (ailondx@rcf.rhic.bnl.gov) Tsinghua University, for the STAR Collaboration

Quark Matter 2025

Abstract

There are significant discussions in the field about the initial conditions, including the size of the system, needed to generate a quark-gluon plasma (QGP). Strangeness production serves as a sensitive probe into the properties of the QGP. It is expected that the Ω/ϕ ratios in different colliding systems may reveal the minimum colliding system size required to produce QGP.

In this poster, we will present the transverse-momentum (p_T) spectra of strange hadron $(\phi, \Omega, \overline{\Omega})$ in isobar (Ru+Ru and Zr+Zr) and O+O collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV at mid-rapidity (y < |0.5|) and the Ω/ϕ ratios in those colliding systems. The O+O system has the extended kinematic coverage benefit from the iTPC upgrade, which extended the rapidity coverage and enhanced the particle identification capability compared with previous results.

Motivation

- Update Ω/ϕ ratio as a function of p_T in different colliding systems to explore the minimum colliding system size required to produce QGP.
- Precise measurement of $\Omega(\overline{\Omega})$ yields to investigate the system size dependence of strangeness production.

STAR Detector

iTPC (STAR Inner Sector TPC Upgrade):

- Larger rapidity coverage IηI from 1.0 to 1.5
- Better PID improved dE/dx resolution
- Lower $p_{\rm T}$ limit from 125 to 60 MeV/c
- Efficiency of strangeness reconstruction improved significantly

Analysis

- Dataset: Run18 isobar 200 GeV and Run21 O+O 200 GeV
- ~730M minimum bias events for isobar
- ~370M minimum bias events for O+O
- Particle identification with TPC(dE/dx) and $TOF(1/\beta)$
- KFParticle method used in Ω reconstruction – efficiency improved at high p_{T}
- $p_{\rm T}$ region of Ω : 0.8 ~ 4.6 GeV/c
- $p_{\rm T}$ region of ϕ : 0.4 ~ 5.0 GeV/c
- Signal extraction: rotational (for Ω) and mix-event (for ϕ) for combinational background, polynomial fit for residual background & double gaussian fit for signal

ϕ Meson $p_{\rm T}$ Spectra

- Precise measurement for 7 centrality (parameter indicating how central the event is) bins
- Maximum $p_T \sim 4.5 \text{ GeV/c}$

Ω Baryon p_T Spectra

- Precise measurement for 7 centrality bins
- Maximum $p_T \sim 4 \text{ GeV/c}$
- Low $p_{\rm T}$ extrapolation with Boltzmann function fit; fraction of the integral yield covered by the measured data points: 62 ~ 70%

dN/dy Yields

- $N_{\rm part}$ (number of participant nucleons) scaled Ω yields increase faster with the increasing N_{part} from large (Au+Au) towards small (O+O) systems.
- May result from higher N_{coll} (number of binary collisions) corresponding to the same N_{part} in smaller systems.

Run11 data points N_{part} shifted for clarity p+p: STAR, Phys. Rev. C 75 (2007) 064901 Cu+Cu: STAR, Phys. Rev. Lett. 108 (2012) 072301

→ O+O 200 GeV (0-5%, N_{Part} ≈ 24)

p+p 200 GeV

O+O 200 GeV (60-80%, N_{Part} ≈ 6)

p_{_} (GeV/c)

Ω/ϕ Ratio

- In isobar and O+O collisions, Ω over ϕ enhancement is observed with respect to p+p collisions. Enhancement increases from peripheral to central collisions.
- For collisions with similar N_{part} , enhancement in central O+O is consistent

with 40-60% isobar. p_{_} (GeV/c) p+p 200 GeV $\Omega + \overline{\Omega}$: X. Zhu, QM2014; p+p 200 GeV φ: STAR, Phys. Rev. C 79(2009) 064903

(\$\phi)N/(\$\overline{\O}\$+\overline{\O}\$)N

Summary and Outlook

- Precise measurement of ϕ , Ω , $\overline{\Omega}$ p_{T} spectra and Ω , $\overline{\Omega}$ yields in isobar and O+O collisions at 200 GeV are achieved.
- $N_{\rm part}$ scaled Ω yield increases faster with the increasing $N_{\rm part}$ from large (Au+Au) towards small (O+O) system.
- In isobar and O+O collisions, Ω over ϕ enhancement is observed with respect to p+p collisions. Enhancement increases from peripheral to central collisions.
- For collisions with **similar** N_{part} , Ω over ϕ enhancement in central O+O is consistent with 40-60% isobar; analysis with high-multiplicity triggered O+O events is ongoing.

