
Measurement of K^{*0} and K^{*+-} in Ru+Ru and Zr+Zr collisions at RHIC

Subhash Singha (<u>subhash@impcas.ac.cn</u>), for the STAR Collaboration Institute of Modern Physics Chinese Academy of Sciences, Lanzhou

Abstract

The neutral $K^{\circ 0}$ and charged $K^{\ast+}$ vector mesons have similar masses and isospin, their quark magnetic moment differ by a factor of five, making them ideal probes for studying Landau level splitting in presence of magnetic (*B*) field in heavy-ion collisions. We present the reconstruction of $K^{\circ 0}$ and $K^{\ast+}$ mesons in RHIC isobar (Ru+Ru and Zr+Zr) collisions. We report on the yield and $<p_T>$ of $K^{\circ 0}$ mesons as well as K°/K ratio in these collisions as a function of collision centrality. The analysis of $K^{\circ,+}$ involving isospin-asymmetric nuclei (Au+Au, Ru+Ru and Zr+Zr) and isospin-symmetric nuclei (O+O), as well as in p+p collisions at 200 GeV is underway. This study can offer insights into Landau levels, isospin violation, and late-stage B-fields in QCD medium.

 $\epsilon_{n,s_z}^2(p_z) = p_z^2 + (2n - 2 \operatorname{sign}(q)s_z + 1) |qB| + m^2$

Experimental details: STAR offers uniform acceptance, full azimuthal coverage and

excellent particle identification

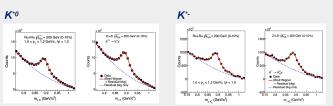
Event selection:

Track selection:

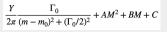
of pile-up events

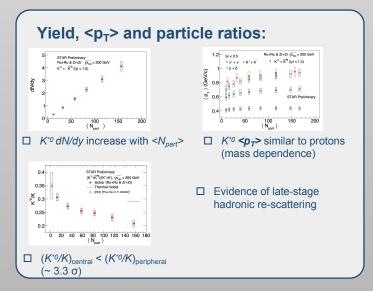
 \square No. of TPC hits > 15,

using Time Projection Chamber (TPC) and Time Of Flight (TOF) q = electric charge n = Landau level s_z = projection of spin along magnetic field p_z = momentum along magnetic field


- □ Under *B*-field, N_{K^**} > N_{K^*0} is expected from Landau level splitting (isospin violation)
- Neutral and charged vector meson's yield ratio can be used to constraint *B*-field at freeze-out

 \Box Vertex: -35 < V_7 < 25 cm, V_r < 2 cm; Centrality from TPC; Rejection


 \Box K^{*+-}: STAR helix topology method for $K_{\rm S}^{0}$ selection, $p_{\rm T} > 0.2$ GeV/c,


Signal reconstruction:

Invariant mass method is used to reconstruct $K^{*0,+,-}$ signal; combinatorial background is constructed via track-rotation technique. A clear signal is observed on top of a combinatorial background

Signal is fitted with a non-relativistic Breit-Wigner function and a second order polynomial for residual background

Summary and outlook:

DCA < 2 cm, $|\eta| < 1.0$ for π

- $\Box \quad K^{*o} \text{ production} \rightarrow \text{studied in isobar collisions } (Ru+Ru, Zr+Zr)$
- \square $K^{*0}/K \rightarrow$ evidence of late-stage hadronic re-scattering

 \Box K^{*0} : $p_T > 0.2$ GeV/c, DCA < 2 cm, $|\eta| < 1.0$ for K and π

 \Box K and π 's are identified using TPC and TOF

- □ Yield difference between neutral K°_0} and charged $K^{\circ_{+}}$ in heavy-ion collisions can help constrain the B-field at freeze-out

Supported in part by the

 $K^{*0} \rightarrow K^+ \pi^-$

 $K^{*+-} \rightarrow K_{s^0} \pi^{--}$

This work is supported by grant from The STAR Collaboration

