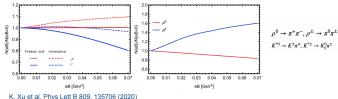


# Measurement of $K^{*0}$ and $K^{*\pm}$ in Ru+Ru and Zr+Zr collisions at RHIC

Subhash Singha (subhash@impcas.ac.cn), for the STAR Collaboration Institute of Modern Physics Chinese Academy of Sciences, Lanzhou




Quark Matter 2025

#### **Abstract**

The neutral  $K^{*0}$  and charged  $K^{*\pm}$  vector mesons have similar masses and total isospin (I), but their third component of isospin ( $I_3$ ) has opposite sign, and their quark magnetic moment differ by a factor of five. These properties making them ideal probes for studying Landau level splitting in presence of magnetic (B) field in heavy-ion collisions. We present the reconstruction of  $K^{*0}$  and  $K^{*\pm}$  mesons in RHIC isobar (Ru+Ru and Zr+Zr) collisions. We report on the yield and  $\langle p_T \rangle$  of  $K^{*0}$  mesons as well as  $K^{*0}/K$  ratio in these collisions as a function of collision centrality. The analysis of  $K^{*0,\pm}$ involving isospin-asymmetric nuclei (Au+Au, Ru+Ru and Zr+Zr) and isospin-symmetric nuclei (O+O), as well as in p+p collisions at 200 GeV is underway. This study can offer insights into Landau levels, isospin violation, and late-stage B-fields in QCD medium.

### Introduction:



The energy level for a point-like charged particle under static uniform magnetic field (B)

$$\epsilon_{n,s_{\mathcal{Z}}}^{2}(p_{\mathcal{Z}}) = p_{\mathcal{Z}}^{2} + (2n-2 \operatorname{sign}(q)s_{\mathcal{Z}} + 1) |qB| + m^{2} \int_{s_{\mathcal{Z}}}^{q-1} e^{-2\pi i a \operatorname{constraint}(q)} e^{-2\pi i \operatorname{constr$$

- Under B-field,  $N_K^{*\pm} > N_K^{*0}$  is expected from Landau level splitting (isospin violation)
- Neutral and charged vector meson's yield ratio can be used to constraint B-field at freeze-out

### Signal reconstruction:

Invariant mass method is used to reconstruct  $K^{*0,\pm}$  signal; combinatorial background is constructed via track-rotation technique; after combinatorial background subtraction a clear signal is observed









Signal is fitted with a non-relativistic Breit-Wigner function and a second order polynomial for residual background

$$\frac{Y}{2\pi} \times \frac{\Gamma_0}{(m-m_0)^2 + (\Gamma_0/2)^2} + A\,M^2 + B\,M + C$$

Source of systematic uncertainty on yield and  $\langle p_T \rangle$ : Signal extraction (fit range and background variation); Yield calculation (histogram vs function integration); Event, track quality, PID selection variation; tracking uncertainty

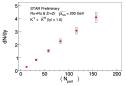
#### **Experimental details:**

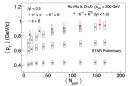
STAR offers uniform acceptance, full azimuthal coverage and excellent particle identification using Time Projection Chamber (TPC) and Time Of Flight (TOF) detectors



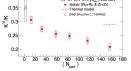
#### Event selection:

Vertex:  $-35 < V_7 < 25$  cm,  $V_r < 2$  cm; Centrality from TPC; Rejection of pile-up events


#### Track selection:


No. of TPC hits > 15,

$$K^{*\pm} \to K^{-} + \pi^{\pm}$$
$$K^{*\pm} \to K_S^{0} + \pi^{\pm}$$


- $K^{*0}$ :  $p_T > 0.2$  GeV/c, DCA < 2 cm,  $|\eta| < 1.0$  for K and  $\pi$
- $_{\Box}$   $K^{*\pm}$ : STAR helix topology method for  $K_{S}^{0}$  selection,  $p_{T}$  > 0.2 GeV/c, DCA < 2 cm,  $|\eta|$  < 1.0 for  $\pi$
- K and  $\pi$ 's are identified using TPC and TOF detectors

## Yield, $\langle p_T \rangle$ and particle ratios:





- ${\it K}^{*0}$  dN/dy increase with  $\langle N_{part} \rangle$   $\,\,$   $\,\,$   $\,\,$   ${\it K}^{*0}$   $\langle p_T \rangle$  similar to protons
  - (mass dependence)



This work is supported by grant from

the Chinese Academy of Sciences

- Evidence of late-stage hadronic re-scattering
- $(K^{*0}/K)_{\text{central}} < (K^{*0}/K)_{\text{peripheral}} (\sim 3.3 \text{ s})$ , Thermal Model

### **Summary and outlook:**

- $K^{*0}$  production  $\rightarrow$  studied in isobar collisions (*Ru+Ru*, *Zr+Zr*)
- $K^{*0}/K \rightarrow$  evidence of late-stage hadronic re-scattering
- $K^{*0}$  analysis is ongoing for O+O and p+p collisions

- $K^{*\pm}$  analysis is underway for Au+Au, Ru+Ru, Zr+Zr, O+O and p+p
- $K^{*0,\pm} \rightarrow$  both are expected to have a similar re-scattering effect; however, their yields can differ due to Landau splitting under B-field

Supported in part by the









