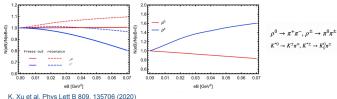


Measurement of K^{*0} and $K^{*\pm}$ in Ru+Ru and Zr+Zr collisions at RHIC

Subhash Singha (<u>subhash@impcas.ac.cn</u>), for the STAR Collaboration Institute of Modern Physics Chinese Academy of Sciences, Lanzhou


Quark Matter 2025

Abstract

The neutral K^{*0} and charged $K^{*\pm}$ vector mesons have similar masses and total isospin (I), but their third component of isospin (I_3) has opposite sign, and their quark magnetic moment differ by a factor of five. These properties making them ideal probes for studying Landau level splitting in presence of magnetic (B) field in heavy-ion collisions. We present the reconstruction of K^{*0} and $K^{*\pm}$ mesons in RHIC isobar (Ru+Ru and Zr+Zr) collisions at $\sqrt{s_{NN}}$

= 200 GeV. We report on the yield of K^{*0} mesons as well as K^{*0}/K ratio in these collisions as a function of collision centrality. The analysis of $K^{*0,\pm}$ involving isospin-asymmetric nuclei (Au+Au, Bu+Bu and Bu+Bu

Introduction:

The energy level for a point-like charged particle under static uniform magnetic field (*B*)

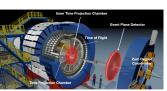
$$\epsilon_{n,s_{\mathcal{Z}}}^{2}(p_{\mathcal{Z}}) = p_{\mathcal{Z}}^{2} + (2n-2 \operatorname{sign}(q)s_{\mathcal{Z}} + 1) \|qB\| + m^{2} \qquad \begin{array}{l} n = \operatorname{Landau} \operatorname{level} \\ s_{\mathcal{Z}} = \operatorname{projection} \operatorname{of} \operatorname{spin} \operatorname{along} \operatorname{magnetic} \operatorname{field} \\ p_{\mathcal{Z}} = \operatorname{momentum} \operatorname{along} \operatorname{magnetic} \operatorname{field} \end{array}$$

- Under B-field, $N_K^*\pm>N_K^*0$ is expected from Landau level splitting (isospin violation)
- Neutral and charged vector meson's yield ratio can be used to constraint B-field at freeze-out

Signal reconstruction:

Invariant mass method is used to reconstruct $K^{*0,\pm}$ signal; combinatorial background is constructed via track-rotation technique; after combinatorial background subtraction a clear signal is observed

Signal is fitted with a non-relativistic Breit-Wigner function and a second order polynomial for residual background


$$\frac{Y}{2\pi} \times \frac{\Gamma_0}{(m-m_0)^2 + (\Gamma_0/2)^2} + A\,M^2 + B\,M + C$$

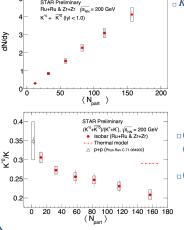
Source of systematic uncertainty on yield:

Signal extraction (fit range and background variation); Yield calculation (histogram vs function integration); Event, track quality, **PID** selection variation; tracking uncertainty

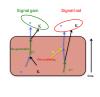
Experimental details:

STAR offers uniform acceptance, full azimuthal coverage and excellent particle identification using Time Projection Chamber (TPC) and Time Of Flight (TOF) detectors

Event selection:


Vertex: -35 < V_z < 25 cm, V_r < 2 cm; Centrality from TPC; Rejection of pile-up events

Track selection:


No. of TPC hits > 15,

- em; Centrality from TPC; Rejectio $K^{*0} \rightarrow K^{\pm} + \pi^{\mp}$
- $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{8}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{7}$ $_{7}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{7}$
- $_{\Box}~~K^{*\pm}$: STAR helix topology method for K^0_S selection, p_T > 0.2 GeV/c, DCA < 2 cm, $\mid \eta \mid$ < 1.0 for π
- κ K and π 's are identified using TPC and TOF detectors

Yield and particle ratios:

 $_{\Box}\mathit{K}^{*0}$ dN/dy increase with $\langle\mathit{N}_{part}\rangle$

- $(K^{*0}/K)_{\text{central}} < (K^{*0}/K)_{\text{peripheral}}$ $(\sim 3.3 \text{ } \sigma)$
- $_{\Box}(K^{*0}/K)_{central}$ < Thermal Model
 - Evidence of late-stage hadronic re-scattering

Summary and outlook:

 $_{\Box}$ K^{*0} production \rightarrow studied in isobar collisions (*Ru+Ru, Zr+Zr*) at $\sqrt{s_{NN}}$ = 200 GeV

- ${}_{\square}K^{*0}/K \rightarrow$ evidence of late-stage hadronic re-scattering
- ${}^{\Box}K^{*0}$ analysis is ongoing for O+O and p+p collisions

- $_{}^{-}$ $K^{*\pm}$ analysis is underway for Au+Au, Ru+Ru, Zr+Zr, O+O and p+p collisions
- ${}^{\Box}K^{*0,\pm}
 ightarrow$ both are expected to have a similar rescattering effect; however, their yields can differ due to Landau splitting under *B*-field

Supported in part by the

This work is supported by grant from the Chinese Academy of Sciences

The STAR Collaboration

