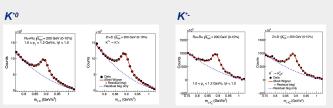
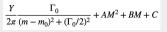
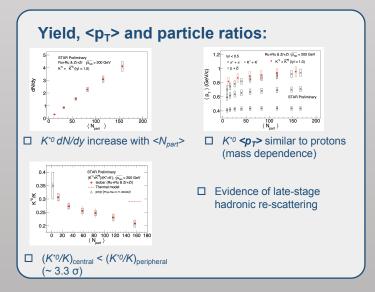

Measurement of K^{*0} and K^{*+-} in Ru+Ru and Zr+Zr collisions at RHIC

Subhash Singha (subhash@impcas.ac.cn), for the STAR Collaboration Institute of Modern Physics Chinese Academy of Sciences, Lanzhou

Abstract


The neutral K^{*0} and charged K^{*+} vector mesons have similar masses and total isospin (I), but their third component of ispsoin (I₃) has opposite sign, and their quark magnetic moment differ by a factor of five. These properties making them ideal probes for studying Landau level splitting in presence of magnetic (B) field in heavy-ion collisions. We present the reconstruction of K^{*0} and K^{*+} mesons in RHIC isobar (Ru+Ru and Zr+Zr) collisions. We report on the yield and $\langle p_T \rangle$ of K^{*0} mesons as well as $K^{*0/K}$ ratio in these collisions as a function of collision centrality. The analysis of $K^{*0,+}$ involving isospinasymmetric nuclei (Au+Au, Ru+Ru and Zr+Zr) and isospin-symmetric nuclei (O+O), as well as in p+p collisions at 200 GeV is underway. This study can offer insights into Landau levels, isospin violation, and late-stage B-fields in QCD medium.


- Under *B*-field, $N_{K^*+} > N_{K^*0}$ is expected from Landau level splitting (isospin violation)
- Neutral and charged vector meson's yield ratio can be used to constraint B-field at freeze-out


Signal reconstruction:

Invariant mass method is used to reconstruct $K^{*0,+,-}$ signal; combinatorial background is constructed via track-rotation technique. A clear signal is observed on top of a combinatorial background

Signal is fitted with a non-relativistic Breit-Wigner function and a second order polynomial for residual background

Summary and outlook:

- \Box K^{*0} production \rightarrow studied in isobar collisions (*Ru+Ru, Zr+Zr*)
- \square $K^{\circ}/K \rightarrow$ evidence of late-stage hadronic re-scattering
- \Box $K^{*+-} \rightarrow$ analysis in Au+Au, Ru+Ru, Zr+Zr, O+O and p+p collisions is underway
- \Box Yield difference between neutral K^{*0} and charged K^{*+} in heavy-ion collisions can help constrain the B-field at freeze-out

Supported in part by the U.S. DEPARTMENT OF

This work is supported by grant from the Chinese Academy of Sciences

Experimental details: STAR offers uniform acceptance.

Time Projection Chamber (TPC)

full azimuthal coverage and

 $K^{*+-} \rightarrow K_{s^0} \pi^{--}$

Event selection:

 \Box Vertex: -35 < V_7 < 25 cm, V_r < 2 cm; Centrality from TPC; Rejection of pile-up events $K^{*0} \rightarrow K^+ \pi^-$

Track selection:

- \square No. of TPC hits > 15,
- \Box K^{*0} : $p_T > 0.2$ GeV/c, DCA < 2 cm, $|\eta| < 1.0$ for K and π
- \Box K^{*+-}: STAR helix topology method for $K_{\rm S}^{0}$ selection, $p_{\rm T} > 0.2$ GeV/c, DCA < 2 cm, $|\eta| < 1.0$ for π
- \Box K and π 's are identified using TPC and TOF detectors