¹ Imaging shapes of atomic nuclei in high-energy nuclear ² collisions at STAR experiment

Chunjian Zhang (for STAR Collaboration)

The shape and orientation of colliding nuclei play a crucial role in determin-4 5 ing the initial conditions of the QGP formed in central collisions, which influence ⁶ key observables such as anisotropic and radial flow. For instance, central colli-7 sions of near-spherical Au nuclei create a QGP with a fixed, circular geometry, ⁸ whereas prolate-shaped uranium nuclei can collide in a variety of orientations, ⁹ producing QGP droplets of diverse shapes and sizes. Hence, by comparing sys-¹⁰ tems with similar mass numbers, such as ²³⁸U and ¹⁹⁷Au, we can map out their ¹¹ shape differences and gain deeper insights into the initial conditions of heavy-¹² ion collisions. In this talk, we present measurements of v_2 , p_T fluctuations, and ¹³ v_2 - p_T correlations in ²³⁸U+²³⁸U and ¹⁹⁷Au+¹⁹⁷Au collisions. Our results reveal ¹⁴ large differences in these observables between the two systems, particularly in ¹⁵ central events. A comparison with hydrodynamic model calculations indicates ¹⁶ a large deformation in uranium nuclei, consistent with previous low-energy ex-17 periments. However, data also imply a small deviation from axial symmetry in ¹⁸ the ground states of the colliding ²³⁸U nuclei [1]. Our work introduces a novel ¹⁹ approach for imaging nuclear shapes, enhances the modeling of QGP initial con-²⁰ ditions, and sheds light on nuclear structure evolution across different energy ²¹ scales. The potential applications of this method for other nuclear species are 22 explored.

 [1] STAR Collaboration, Nature 635, 67-72 (2024), https://doi.org/10.1038/s41586-24 024-08097-2

3