System size dependence of particle production in $\mathrm{p} / \mathrm{d}+\mathrm{Au}, \mathrm{Ru}+\mathrm{Ru}, \mathrm{Zr}+\mathrm{Zr} \mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{\mathrm{NN}}}=$ 200 GeV with the STAR experiment

Tong Liu ${ }^{1}$ and Yang $\mathrm{Li}^{2,3}$ for the STAR collaboration
${ }^{1}$ Yale University, New Haven, CT, USA
${ }^{2}$ University of Science and Technology of China, Hefei, Anhui, China
${ }^{3}$ Brookhaven National Lab, Upton, NY, USA

While it has been confirmed that the hot and dense QCD medium called the Quark-Gluon Plasma (QGP) can be produced in large system heavy-ion collisions (e.g. $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Pb}+\mathrm{Pb}$), recent studies on hard scatterings do not show significant quenching in small systems (e.g. p+Au). Therefore, medium size systems, such as $\mathrm{Ru}+\mathrm{Ru}$ and $\mathrm{Zr}+\mathrm{Zr}$ collisions, become crucial to study the system size dependence of QGP formation and its properties. Such collisions provide a wide dynamic range in the number of participants ($N_{\text {part }}$) from about 10 to 165 , sitting in between $\mathrm{p}+\mathrm{Au}$ and central $\mathrm{Au}+\mathrm{Au}$ collisions. Also, the $N_{\text {part }}$ of $\mathrm{Ru}+\mathrm{Ru}$ and $\mathrm{Zr}+\mathrm{Zr}$ collisions partially overlap with that of $\mathrm{Au}+\mathrm{Au}$ collisions, allowing us to study how collision geometry influences QGP formation and its evolution. A useful tool is the transverse momentum $\left(p_{\mathrm{T}}\right)$ distribution of charged hadrons. On the one hand, high p_{T} hadrons serve as a proxy to hard scattering processes and can be used to probe parton energy loss in the medium. On the other hand, the distribution on the low- p_{T} end, especially those of species-identified particles, can reveal the transverse expansion and freeze-out properties of the medium.

In this talk, we present charged hadron yields using the large isobar $\left({ }_{44}^{96} R u+{ }_{44}^{96} R u\right.$ and ${ }_{40}^{96} Z r+{ }_{40}^{96} Z r$) dataset collected with the STAR detector in 2018. We perform multi-differential yield measurements of low p_{T} identified particles, and centralitydifferential measurement on high p_{T} particles. Combined with existing $\mathrm{Au}+\mathrm{Au}$ and small system $(p+\mathrm{Au} / d+\mathrm{Au})$ measurements, we picture an overall system size dependence of QGP production and properties as well as effects of collision geometry on them.

