

uark Matter 2023

The 30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Anisotropic Flow of Identified Particles in Au + Au Collisions at $\sqrt{s_{NN}} = 3 - 19.6$ GeV

Zuowen Liu (for the STAR Collaboration) Central China Normal University

Supported in part by

Outline

Motivation

Anti-flow of kaons

\succ Energy dependence of v₁, v₂

\succ NCQ scaling of v₂, v₃

➢ Summary

Beam Energy Scan

➢ RHIC Beam Energy Scan:

- Collider mode: $\sqrt{s_{NN}} = 7.7 200 \text{ GeV}$
- Fixed-target(FXT) mode: $\sqrt{s_{NN}} = 3 13.7 \text{ GeV}$
- Solution Baryon density region: $\mu_B = 25 720 \text{ MeV}$
 - Study the properties of QGP.
 - Search for the critical point and locate the first-order phase boundaries.

X.Luo, S.Shi, Nu Xu et al. Particle 3, 278 (2020)

Anisotropic Flow

- v_1 reveals the interplay between initial compression and tilted expansion.
- v_2 and v_3 are sensitive to event-by-event fluctuations, and provide insight on the constituent interactions and degree of freedom.

B. Mohanty, N. Xu, Journal of Physics G 36, 064022 (2009); M. Nasim et al. Physical Review C 87, 014903 (2013)

Motivation

- E895: anti-flow of kaon at low p_T . \rightarrow Kaon potential ?
- NCQ scaling violation at 3 GeV.
 Degree of freedom: partonic → hadronic ?

P. Chung et al. (E895 Collaboration), Phys. Rev. Lett. 85, 940(2000). M. S. Abdallah et al. (STAR Collaboration), Phys. Lett. B 827 (2022) 137003

STAR Detectors

FXT mode:

Tracking and particle identification:

- Time Projection Chamber
 - Charged particle tracking
 - Particle identification

Time Of Flight

• Particle identification

Event plane determination:

- Event Plane Detector
 - $2.1 < |\eta| < 5.1$

Particle Identification

- Good particle identification capability based on TPC and TOF.
- Decayed particles are reconstructed by KF(Kalman Filter) particle package.

A. Banerjee, I. Kisel and M. Zyzak, Int. J. Mod. Phys. A 35, 2043003 (2020)

Anti-flow of Kaon

Anti-flow of Mesons

- $\pi^+(u\bar{d})$ and $K_S^0(d\bar{s})$ show negative v_1 slope.
- Anti-flow observed at 3 3.9 GeV.

See also posters: Xing Wu: #673 Guoping Wang: #551

Anti-flow of Mesons

- 3.9 GeV: anti-flow of π^+ and K_S^0 at low p_T .
- JAM reproduces anti-flow at low p_T without incorporating kaon potential.
- Anti-flow could be explained by shadowing effect from spectator.

Note:

Soft EoS in JAM baryonic mean field: the nuclear incompressibility K = 210 MeV

Yasushi Nara, Akira Ohnishi. Phys. Rev. C. 105, 014911(2022)

Energy Dependence of v₁, v₂

- v₁ slope decreases in magnitude as collider energy increases. → Stronger tilted expansion.
- Negative v₂ turns to positive:
 Out-of-plane flow (spectator effect) → in-plane flow

Energy Dependence of v₁, v₂

Baryonic mean field enhances v₁ slope.
 → Strong mean field at high baryon density region.

Note: Soft EoS in JAM baryonic mean field: the nuclear incompressibility K = 210 MeV Only baryonic mean-field with spectator shows sign change of v₂. → Mean-field and spectator shadowing play important roles.

Yasushi Nara, Akira Ohnishi. Phys. Rev. C. 105, 014911(2022)

NCQ Scaling of v₂, v₃ at 19.6 GeV

NCQ scaling of $v_2(v_3)$ holds within 10(15)% for anti-particles, • 20(30)% for particles. \rightarrow Partonic interaction plays important role at 19.6 GeV.

1.6

1.4

 $(m_{T}^{0.6} - m_{0}^{0.8})/n_{r}^{1}$ (GeV/c²)

0.4

0.6

NCQ Scaling of v₂ at 14.6 GeV

NCQ scaling of v₂ holds within 15% for anti-particles, 25% for particles.
 → Partonic interaction plays important role at 14.6 GeV.

NCQ Scaling of v_2 at 3.2 GeV

NCQ scaling of v₂ breaks completely at 3.2 GeV.
 → Hadronic interaction dominates.

Summary

- \geq 3 3.9 GeV: anti-flow observed for π^+ and K_S^0 at low p_T.
 - \rightarrow Shadowing effect from spectator could result in anti-flow.
- \blacktriangleright Negative $v_2 \rightarrow$ positive v_2 \rightarrow The change of out-of-plane to in-plane expansion happens at 3 - 3.9 GeV.
- emperature NCQ scaling of v_2 , v_3 holds at 14.6 GeV and \succ above, in contrast to violation at 3.2 GeV and below.

 \rightarrow Partonic(> 14.6 GeV) to hadronic(< 3.2 GeV).

Outlook

- Enhanced statistics, upgraded detectors from BES-II.
- Explore the QCD phase diagram with BES-II 3 19.6 GeV data.

Thank you for your attention!