Measurement of directed flow at forward and backward pseudorapidity with the Event Plane Detector (EPD) from STAR

Xiaoyu Liu¹ (For the STAR Collaboration)

¹ The Ohio State University

Directed flow (v_1) describes the collective sideward motion of produced par-1 ticles and nuclear fragments in heavy-ion collisions. The pseudorapidity (η) 2 dependence of v_1 can provide unique constraints on the initial conditions and 3 hydrodynamic evolution of the Quark-Gluon Plasma. Directed flow in both 4 spectator and participant regions is sensitive to early non-equilibrium dynamics 5 and may provide insights into the baryon stopping mechanism. Prior to the 6 2018 RHIC run, the Event Plane Detector (EPD, $2.1 < |\eta| < 5.1$) was installed 7 in STAR and used for the Beam Energy Scan phase-II (BES-II) data taking. 8 The combination of EPD and high statistics BES-II data enables us to extend 9 the v_1 measurement to the forward and backward η regions, allowing us to test 10 the phenomenon of limiting fragmentation. In this poster, we will present the 11 measurement of v_1 over six units of η in Au+Au collisions at $\sqrt{s_{NN}} = 27$ and 12 19.6 GeV and compare the results with hydrodynamic and transport model 13 calculations. 14