Probing the QCD Phase Structure with Elliptic Flow in Au+Au Collisions at $\sqrt{s_{NN}}=3.0\text{-}19.6~\mathrm{GeV}$ at RHIC

Guoping Wang (for the STAR Collaboration)

In heavy-ion collisions, the elliptic flow (v_2) represents the second harmonic coefficient in the Fourier expansion of the azimuthal distribution relative to the reaction plane. It serves as a sensitive indicator of the interaction strength among the system's constituents and offers a valuable means to explore its degrees of freedom.

In this poster, we will present v_2 measurements for a variety of hadrons, including π^{\pm} , K^{\pm} , p, \bar{p} , K_S^0 , ϕ , Λ , $\bar{\Lambda}$, Ξ^{\pm} and Ω^{\pm} in Au + Au collisions, based on high-statistics datasets from the second phase of the RHIC Beam Energy Scan (BES-II) program measured by STAR. The scaling of v_2 according to the Number of Constituent Quarks (NCQ) for both particles and antiparticles will be examined. In addition, the NCQ-scaled v_2 ratios of particles such as π^+/K^+ , p/K^+ , π^-/K^- , \bar{p}/K^- , ϕ/K^- , Λ/K_S^0 and $\bar{\Lambda}/K_S^0$, across the energy range $\sqrt{s_{NN}}=3.0$ -19.6 GeV will be presented. The inferred information related to the QCD phase structure will be discussed.