

Understanding the Quark Coalescence Dynamics with **Directed and Elliptic Flow of Identified Particles from** the STAR BES-II Data

Xiatong Wu (maxwoo@physics.ucla.edu), for the STAR Collaboration University of California, Los Angeles

Quark Matter 2025

Abstract

The coalescence sum rule accounts for distinct characteristics of the transported and pair-produced quarks in the coalescence mechanism and can explain many measured features of collectivity of identified particles. We present Λ $\Delta(dv_1/dy)$ measurements in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7-27 GeV, which agrees with the coalescence sum rule across most analyzed energies. A coalescence-inspired test also links the v_2 of charged pions and antiprotons to the numbers of constituent quarks in the incident nuclei. The observed ratio of $(v_2^{\pi^-} - 2/3 v_2^{\bar{p}})/(v_2^{\pi^+} - 2/3 v_2^{\bar{p}})$ is consistent with 315/276, the ratio between the numbers of d and u constituent quarks in a gold nucleus.

College | Physical Sciences

Physics & Astronomy

UCLA