Quark Matter 2025, Apr 6 – 12, 2025, Goethe University, Frankfurt

Production of Light Nuclei in Au+Au Collisions with the STAR BES-II Program

Yixuan Jin (for the STAR Collaboration)

Central China Normal University & Heidelberg University

April 12, 2025

Introduction

Light Nuclei

- Loosely bound objects with small binding energies.
- Production mechanism: thermal model or coalescence model?

Light Nuclei Yield Ratio $(N_t \times N_p/N_d^2)$

 The yield ratio is proposed to be sensitive to neutron density fluctuations:

 $N_{\rm t} \times N_{\rm p}/N_{\rm d}^2 \approx g(1 + \Delta n)$

factor $g = \frac{1}{2\sqrt{3}}$ comes from thermal equilibrium assumption of nucleon abundances. *K. Sun et al. Phys.Lett.B* 774 (2017) 103-107 *E. Shuryak et al. Phys.Rev.C* 101 (2020) 3, 034914

RHIC Beam Energy Scan Phase-II Program

- Collider energies ($\sqrt{s_{NN}} = 7.7 27 \text{ GeV}$)
- FXT energies $(\sqrt{s_{\rm NN}} = 3.0 13.7 \text{ GeV})$

STAR Note: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

STAR Collaboration, Phys. Rev. Lett. 130 (2023) 202301. *STAR Collaboration, Phys. Rev. C* 110, 054911 (2024). *K.J. Sun et al, Phys. Lett. B* 833 (2022) 137329.

Yixuan Jin

Particle Identification

Yixuan Jin

Transverse Momentum Spectra

- > Obtained spectra for p, d, ³He, \overline{p} and \overline{d} as a function of $p_{\rm T}$ and centrality in Au+Au collisions at 7.7 27 GeV.
- > $p_{\rm T}$ -integrated yields: Blast-wave function is used for low- $p_{\rm T}$ extrapolation

$$\frac{1}{2\pi p_{\rm T}} \frac{{\rm d}^2 N}{{\rm d}p_{\rm T} {\rm d}y} \propto \int_0^R r {\rm d}r m_{\rm T} I_0 \left(\frac{p_{\rm T} {\rm sinh}\rho}{T}\right) K_1 \left(\frac{m_{\rm T} {\rm cosh}\rho}{T}\right),$$

where $\rho = {\rm tanh}^{-1} \beta_r = {\rm tanh}^{-1} \left[\beta_{\rm T} \left(\frac{r}{R}\right)^n\right].$

> The low $p_{\rm T}$ reach is extended in BES-II, which leads to smaller systematic uncertainties in $p_{\rm T}$ -integrated yields.

Yixuan Jin

Particle Yields and Ratios

- The penalty factor is larger at higher collision energies, which reflects the increased difficulty to form high-mass objects.
 E864 Collaboration, Phys.Rev.Lett. 83 (1999) 5431-5434 STAR Collaboration, Phys.Rev.Lett. 130 (2023) 202301
- The d/p and d/p ratio can be well described by the thermal model while the t/p and ³He/p ratios are overestimated.
 V. Vovchenko, et al, Phys. Rev. C 93, 064906 (2016)
 V. Vovchenko, et al, Phys. Lett. B, (2020) 135746

Yixuan Jin

Quark Matter 2025, Frankfurt

K.J. Sun, et al, Nature Commun, 15 (2024) 1, 1074

Coalescence Parameters

FXT results see poster by Liubing Chen, ID: 711

$$\circ \quad E_{A} \frac{d^{3} N_{A}}{d^{3} p_{A}} = B_{A} \left(E_{p} \frac{d^{3} N_{p}}{d^{3} p_{p}} \right)^{Z} \left(E_{n} \frac{d^{3} N_{n}}{d^{3} p_{n}} \right)^{A-Z}$$
$$\circ \quad B_{A} \propto \left(\frac{1}{V_{eff}} \right)^{A-1}$$

where A and Z are the mass and charge number of the nucleus. The coalescence parameters B_A reflect the probability of nucleon coalescence. *R. Scheibl and U. Heinz Phys.Rev.C* 59 (1999) 1585-1602

STAR Collaboration, Phys.Rev.C 99 (2019) 6, 064905

- $> \sqrt[A-1]{B_A}$ decrease with increasing energy, which indicates the effective volume (phase space region where nucleons can coalesce) increases with increasing energy.
- > No significant differences were observed in the coalescence parameters for d, \overline{d} , and ³He.

Summary and Outlook

Summary:

- ➤ We report the light nuclei productions (p, d, ³He, \bar{p} and \bar{d}) in Au+Au collisions at $\sqrt{s_{NN}} = 7.7 27$ GeV from RHIC STAR BES-II.
- > Thermal model reproduces the d/p, $\overline{d}/\overline{p}$ ratios, but overestimates the ³He/p ratio.
- ➢ Comparing with measurements from FXT energies (3 − 4.5 GeV), we observe that the coalescence parameters decrease with increasing energy, which indicates the effective volume increases with energy.

Outlook:

- > Measure the compound ratio $(N_p \times N_t/N_d^2)$ using BES-II data.
- > Extend measurements to heavier nuclei over a broad energy range from $\sqrt{s_{NN}} = 3 27$ GeV.

Thank you for your attention!