Beam-energy dependence of spatial and temporal characteristics of shape-selected events in Au+Au collisions at STAR

Benjamin Schweid (For the STAR Collaboration),

Stony Brook University

Abstract

Femtoscopic measurements can be leveraged to gain insight into the expansion dynamics of the hot and dense medium created in heavy-ion collisions. This poster presentation will report and discuss excitation functions for shape-selected two-pion HBT radii (R_{out} , R_{side} and R_{long}) measured for a broad range of collision centrality and average pair transverse momentum (k_T) with the STAR detector. The shape selections were accomplished via cuts on the distributions of the second-order Q_2 vector [1]. The excitation functions, which span the full range of the RHIC beam energy scan ($\sqrt{s_{NN}} = 7.7-200$ GeV), indicate clear sensitivities to the magnitude of the Q_2 vector which give insight into the expansion dynamics. The connection between the magnitude of the Q_2 vector and the spatiotemporal characteristics of the quark-gluon plasma produced in the collisions will be discussed.

[1] J. Schukraft, A. Timmins, and S. A. Voloshin, Phys.Lett. B719, 394 (2013).