Thermal dielectron measurement in Au+Au collisions at $\sqrt{s_{\rm NN}} = 7.7$ GeV with the STAR experiment Chenliang Jin (Rice University)

Chenliang Jin (Rice University) for the STAR Collaboration

Due to the minimal interactions with the hot and dense QCD matter cre-5 ated in relativistic heavy-ion collisions, thermal dileptons emitted throughout 6 the medium evolution are suggested as an excellent probe to study the medium 7 properties. In the dilepton invariant mass range from 400 to 800 MeV/ c^2 , the 8 mass distribution is proportional to the in-medium ρ propagator, which is sen-9 sitive to medium's properties including total baryon density and temperature. 10 The systematic measurement of in-medium ρ propagators at different collision 11 environments can be used to study the vector meson interactions with the hot 12 and dense QCD medium. 13

¹⁴ During the Beam Energy Scan Phase-II (BES-II) program, the STAR ex-¹⁵ periment recorded large datasets at low center-of-mass energies ($\sqrt{s_{\rm NN}}$) from ¹⁶ 3 to 19.6 GeV with detector upgrades. In this poster, we will report the first ¹⁷ measurement of the thermal dielectron invariant mass distribution at $\sqrt{s_{\rm NN}} =$ ¹⁸ 7.7 GeV. Machine learning techniques are used for suppressing background and ¹⁹ increasing signal significance, which is critical for such measurements at low ²⁰ energies.