

Supported in part by:

Office of Science

Jan Vanek, for the STAR Collaboration Brookhaven National Laboratory QM 2025, Frankfurt, Germany 7. 4. 2025

NON-PERTURBATIVE QCD: QUARK CONFINEMENT

Low temperature/density

- Confinement of partons in hadrons
- Chiral symmetry broken
- Hadronic matter

High temperature/density

- Deconfined matter of quarks and gluons
- Chiral symmetry (partially) restored
- Early universe, Quark-Gluon Plasma

NON-PERTURBATIVE QCD: QUARK CONFINEMENT

Low temperature/density

- Confinement of partons in hadrons
- Chiral symmetry broken
- Hadronic matter

High temperature/density

- Deconfined matter of quarks and gluons
- Chiral symmetry (partially) restored
- Early universe, Quark-Gluon Plasma
- Hadron-parton transition
 - Temperature, nature of phase transition?
- Chiral symmetry breaking/restoration
 - Same temperature as hadron-parton transition?
- How do hadrons acquire their properties?
 - Parton vs. hadron properties (mass, spin...)

Uncovering how confinement shapes hadron properties is one of the key questions in nuclear and particle physics.

EMERGENT HADRON PROPERTIES

Mass

- Hadron masses far exceed those of their constituent partons
 - Chiral symmetry breaking
 - Dynamical mass generation from QCD vacuum

EMERGENT HADRON PROPERTIES

Mass

- Hadron masses far exceed those of their constituent partons
 - Chiral symmetry breaking
 - Dynamical mass generation from QCD vacuum

Spin

- Proton spin crisis
 - Valence quarks account for only $\sim 30\%$ of proton's spin
 - Gluons carry next $\sim 30\%$ and sea quarks the rest
- Λ^0 hyperon polarization puzzle
 - Polarized Λ^0 observed in collisions of unpolarized particles
- Our goal is to experimentally reveal the origin of these emergent hadron properties

2

VACUUM: MAXIMALLY ENTANGLED QUARK PAIRS

- Quark condensate has up (u, \overline{u}) , down (d, \overline{d}) , and strange (s, \overline{s}) quarks
- Quark pairs from the vacuum are expected to emerge as maximally entangled spin-triplet states with aligned spins
 - The only way to preserve the vacuum's quantum numbers $J^{PC} = 0^{++}$

J. R. Ellis, D. Kharzeev, and A. Kotzinian, Z. Phys. C 69, 467 (1996)

• We aim to experimentally track the evolution of these entangled $s\bar{s}$ quark pairs into the hadronic level

NEW EXPERIMENTAL APPROACH

• We use the spin-spin correlation of $\Lambda^0 \overline{\Lambda}^0$ hyperon pairs measured in p+p collisions to study the hadronization of the entangled $s\overline{s}$ quark pairs from the QCD vacuum

EXPERIMENTAL METHOD

- Find a Λ^0 hyperon pair (any combination) in one event
 - Decay channel $\Lambda^0 \to p \pi^+$ and charge conjugate
- Boost proton (anti-proton) from decay of the corresponding Λ^0 ($\overline{\Lambda}^0$) to **rest frame of its mother**
- Measure angle θ^* between the two **boosted protons**
 - The distribution of pair angle is given by:

 $\frac{1}{N}\frac{\mathrm{d}N}{\mathrm{d}\cos(\theta^*)} = \frac{1}{2}\left[1 + \alpha_1\alpha_2P_{\Lambda_1\Lambda_2}\cos(\theta^*)\right]$

- α_1 and α_2 are weak decay parameters of Λ^0 or $\overline{\Lambda}^0$ (α_- or α_+)
- A non-zero $P_{\Lambda_1\Lambda_2}$ would indicate spin correlation between the two Λ^0 ($\overline{\Lambda}^0$) hyperons
 - No global single Λ^0 hyperon polarization expected at STAR at mid-rapidity

SOLENOIDAL TRACKER AT RHIC (STAR)

- Key subsystems for this analysis:
 - Solenoidal magnet
 - 0.5 T magnetic field allowing low p_T coverage
 - Time Projection Chamber (TPC)
 - Measurement of charged particle transverse momentum (p_T)
 - Particle identification (PID) based on energy loss in TPC gas
 - Full azimuthal coverage for $|\eta| < 1$

EVENT AND TRACK SELECTION, PID

Data-set:

- p+p collisions at $\sqrt{s} = 200$ GeV (2012)
 - Ca. 600M minimum bias events
- Track selection to ensure good track quality within geometrical acceptance
- Particle identification (PID) to obtain pure proton and pion sample
- Decay topology to suppress combinatorial background from tracks originating from close to primary vertex

Ionization energy loss in TPC

Jan Vanek, QM 2025

SIGNAL EXTRACTION STAR

p+p √s = 200 GeV

Minimum bias

b)

1.105

1.11

C)

500

400

000 Entries 200

100

0 1.125

1.12

Mn,2 (GeV/C2)

1.115

- Signal extraction determined from 2D M_{inv} distributions of unlike-sign (US) πp pairs
- Three components:
 - a) <u>Peak</u>: πp from Λ^0 ($\overline{\Lambda}^0$) decay paired with another πp from Λ^0 ($\overline{\Lambda}^0$) decay
 - b) <u>Ridges</u>: πp from Λ^0 ($\overline{\Lambda}^0$) decay paired with combinatorial background
 - Continuum: combinatorial background C) paired with combinatorial background
- Contributions (b) and (c) are subtracted from (a) and fitted with 2D Gaussian function
 - Signal region is defined as mean $\pm 2\sigma$

a)

ACCEPTANCE EFFECT CORRECTION

Before correction

SPIN-SPIN CORRELATION EXTRACTION

• Spin-spin correlation is extracted by fitting $dN/d\cos(\theta^*)$ distributions after ME correction for signal+background (P_{S+B}) and background (P_B) using:

 $dN/d\cos(\theta^*) = A[1 + B\cos(\theta^*)]$

- A and B are parameters of the fit
- A is normalization, $B = \alpha_1 \alpha_2 P_{\Lambda_1 \Lambda_2}$
- Signal (P_S) is calculated according to:

 $P_{S+B} = f_S P_S + (1 - f_S) P_B$

- f_s is signal fraction
- Signal extracted for two relative pair kinematics:
 - Short-range: $|\Delta y| < 0.5$ and $|\Delta \phi| < \pi/3$
 - **Long-range:** $0.5 < |\Delta y| < 2.0 \text{ or } \pi/3 < |\Delta \phi| < \pi$

A SPIN-SPIN CORRELATIONS

- Spin-spin correlation for short-range (a) and long-range (b) hyperon pairs
 - Compared to null measurement of K⁰_s and PYTHIA calculation
- Short-range $\Lambda\overline{\Lambda}$ pairs show non-zero spin-spin correlation
 - $P_{\Lambda_1 \Lambda_2} = 0.181 \pm 0.035_{stat} \pm 0.022_{sys}$
 - Significance 4.4 standard deviation
- All other pairs are consistent with zero

STAR preliminary

 $0.5 < |\Delta y| < 2.0$,

 $|\Delta y| < 0.5,$

Jan Vanek, QM 2025

A SPIN-SPIN CORRELATIONS

- Spin-spin correlation for short-range (a) and long-range (b) hyperon pairs
 - Compared to null measurement of K⁰_s and PYTHIA calculation
- Short-range ΛΛ pairs show non-zero spin-spin correlation
 - $P_{\Lambda_1\Lambda_2} = 0.181 \pm 0.035_{stat} \pm 0.022_{sys}$
 - Significance 4.4 standard deviation
- All other pairs are consistent with zero

M. Burkardt and R. L. Jaffe, Phys. Rev. Lett. 70, 2537 (1993) J. Ellis, *et al.*, Eur. Phys. J. C 52, 283–294 (2007)

7.4.20

• Expected maximum for $\Lambda^0 \overline{\Lambda}^0$ pairs in our dataset based on models and feed-down from decay of heavier hyperons:

• **Pure spin triplet** $s\bar{s}$ **pairs** from QCD vacuum: $P_{s\bar{s}} = 1/3$

• What happens when such pair hadronizes into $\Lambda^0\overline{\Lambda}^0$ pair?

MAXIMUM EXPECTED SPIN-SPIN CORRELATION

• $P_{\Lambda_1\Lambda_2,SU(6)} = 0.096 \pm 0.004$ • $P_{\Lambda_1\Lambda_2,BJ} = 0.015 \pm 0.002$

- Model prediction has two components:
 - Single Λ^0 ($\overline{\Lambda}^0$) polarization depending on its mother particle from two models:
 - Non-relativistic SU(6) quark model and Burkardt-Jaffe (BJ) model
 - Feed-down mixture for $\Lambda^0\overline{\Lambda}{}^0$ pairs from PYYHIA 8 + Geant simulation

Single Λ^0 ($\overline{\Lambda}^0$) polarizations depending on its mother particle from SU(6) and BJ models

N. A. Tornqvist, Phys. Lett. A542117, 1 (1986)

Λ 's parent	SU(6)	BJ model
Primary	1	0.63
Σ^0	1/9	0.15
Ξ^0	0.6	-0.37
Ξ^-	0.6	-0.37
Σ^*	5/9	N/A

AA SPIN-SPIN CORRELATIONS

PHYSICS IMPLICATIONS

- We observed the first evidence of a positive spin-spin correlation of short-range ΛΛ pairs from p+p collisions at 200 GeV.
- This may represent a new experimental approach to probing the quark condensate
 - Our results align with short-range $\Lambda\overline{\Lambda}$ pairs being in a spintriplet state, as expected for $\Lambda\overline{\Lambda}$ pairs from the QCD vacuum
- The ss pair's spin-spin correlation appears to largely survive hadronization
 - First time, we seem to track the spin degree of freedom through QCD quark-to-hadron transition
 - A key insight into hadronization process of (s) quarks

PHYSICS IMPLICATIONS CONT.

- Result support a scenario where s quarks carry most of the hyperon's spin
 - Results offer valuable insight into how partons contribute to the Λ hyperon's spin
- Possible experimental approach to observe quantum decoherence
 - Spin-spin correlation weakens with increasing pair separation
 - Can be extended to p+Au or Au+Au to study influence of cold nuclear matter effects and the QGP
- Provides new insight into the Λ hyperon polarization puzzle and spin transfer
 - New experimental constraints on both initial- and finalstate models

FUTURE PROSPECTS

- Extension of kinematic coverage beyond |y| < 1
 - Access to region with non-zero single Λ^0 hyperon polarization
 - STAR forward upgrade
- Hight $p_T \Lambda^0$ in jets study of $g \to s\bar{s}$
 - Spin configuration of ss given by gluons
- Collision energy dependence
 - From RHIC to LHC
- Other collision systems
 - p+A cold nuclear matter effects
 - A+A Quark Gluon Plasma, chiral symmetry restoration

STAR forward upgrade $2.5 < |\eta| < 4$ Forward Tracking and Calorimeter Systems Taking data since 2022

THANK YOU FOR ATTENTION

Jan Vanek, QM 2025

BACKUP

EVENT AND TRACK SELECTION, PID

Data-set:	Event selection	$ V_{z} < 60 \text{ cm}$
• p+p collisions at $\sqrt{s} = 200$ GeV (2012)		p_{T} > 150 MeV/c
 Ca. 600M minimum bias events 	Two alt apla ation	$ \eta < 1$
 Events with primary vertex close to center of STAR detector selected 	TTACK Selection	nHitsFit > 20
		nHitsFit/nHitsMax > 0.52
 Track selection to ensure good track quality within geometrical acceptance 	Particle identification	$ n\sigma_{\pi} < 3$
		$ n\sigma_{\rm p} < 2$
 Particle identification to obtain pure 	l Decay topology A ⁰	$DCA_{\pi-PV} > 0.3 \text{ cm}$
proton and pion sample		$DCA_{p-PV} > 0.1 \text{ cm}$
 Decay topology to suppress combinatorial background from tracks originating from 		$DCA_{\Lambda-PV} < 1.0 \text{ cm}$
close to primary vertex		$DCA_{pair} < 1.0 cm$
		$2 \text{ cm} < L_{\text{dec}} < 25 \text{ cm}$
		$\cos(\theta) > 0.996$

EXPERIMENTAL METHOD

- Find a Λ^0 hyperon pair (any combination) in one event
 - Decay channel $\Lambda^0 \rightarrow p\pi^+$ and charge conjugate
 - $p_{\Lambda^0,lab} = p_{p,lab} + p_{\pi^-,lab}$
- Boost (anti-)proton from decay of the corresponding Λ^0 $(\overline{\Lambda})$ to rest frame of its mother
 - Proton momenta in mother rest frame: $p_{p,CMS_{\Lambda}}$, $p_{\bar{p},CMS_{\bar{\Lambda}}}$
- Measure angle θ^* between the two **boosted protons**
 - The distribution of pair angle is given by:

 $\frac{1}{N}\frac{\mathrm{d}N}{\mathrm{d}\cos(\theta^*)} = \frac{1}{2}\left[1 + \alpha_1\alpha_2P_{\Lambda_1\Lambda_2}\cos(\theta^*)\right]$

• α_1 and α_2 are α_+ or α_- , depending on Λ^0 hyperon pair

- A non-zero $P_{\Lambda_1\Lambda_2}$ would indicate spin correlation between the two Λ^0 ($\overline{\Lambda}^0$) hyperons

EXPERIMENTAL METHOD

- Find a Λ^0 hyperon pair (any combination) in one event
 - Decay channel $\Lambda^0 \rightarrow p\pi^+$ and charge conjugate
 - $p_{\Lambda^0,lab} = p_{p,lab} + p_{\pi^-,lab}$

• A non-zero $P_{\Lambda_1\Lambda_2}$ would indicate spin correlation between the two Λ^0 hyperons

Jan Vanek, QM 2025

FEED-DOWN ESTIMATION

- Feed-down estimation for of $\Lambda^0 \overline{\Lambda}^0$ in p+p collisions at $\sqrt{s} = 200 \text{ GeV}$
 - PYTHIA 8 + Geant simulation

