

Measurement of higher harmonic flow of ϕ meson in STAR at RHIC

Mukesh Kumar Sharma (for the STAR Collaboration)

University of Jammu, Jammu, INDIA

 $v_n^{Sig+Bg}(m_{inv}) = <\cos(n(\Phi - \Psi)) >$

Abstract

One of the main goals of the STAR experiment at Relativistic Heavy Ion Collider (RHIC) is to study the properties of hot and dense matter created in the collision of two heavy nuclei [1]. The higher harmonics of azimuthal anisotropy v_n of produced particles are believed to be a sensitive way to characterize the system created in the heavy-ion collision [2, 3]. Moreover higher harmonics of the ϕ meson are a clean probe for the early dynamics since the ϕ meson freeze-out early and it has small hadronic interaction. The relation between various v_n is sensitive to thermalization and dissipation effects in heavy-ion collision [4]. We present the first measurements of ϕ -meson $v_3(p_T)$ and $v_4(p_T)$ at mid-rapidity in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Centrality dependence of $v_3(p_T)$ and v_4 (p_T) are shown and compared to corresponding v₂ values. Ratios between various harmonics are presented and possible implication of those results are discussed.

_1.0< p_T < 1.3 (GeV/c)

Introduction

- φ meson is a clean probe for early dynamics
- The ratios between various harmonics can be used to understand the properties of the system created in heavy-ion collision

understand the properties of the system of eated in neavy for comston		$ \begin{array}{c} 0.02 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	sig Sig	Bg
<u>Coalescence Model:</u>	<u>Hydro Model:</u>		$= v_n^{sig} \cdot \frac{B}{Sig + Bg} (m_{inv}) + v_n^{Bg}$	$\frac{B}{Sig + Bg}(m_{inv})$
$\frac{v_{4,M}(2p_T)}{v_{2,M}^2(2p_T)} \approx \frac{1}{4} + \frac{1}{2} \frac{v_{4,q}(p_T)}{v_{2,q}^2(p_T)}$	$\frac{v_4}{v_2^2} = 0.5$	$\begin{bmatrix} 0.01 \\ 0.008 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.008 \\ 0.006 \\ 0.008 \\ 0.0$	¹ N. Borghini and J. Ollitrault Phys.F	Rev. C 70, 064905(2004)
Where $v_{n,q}(p_T) = K v_{2,q}^{n/2}(p_T)$ If K-1 $v_{4,M}(2p_T) = 0.75$	$\frac{v_3}{-1}$ = constant at high p _T	$v_2^{}$, $v_3^{}$, $v_4^{}$ of ϕ meson	Results	
$\frac{11}{v_{2,M}^2(2p_T)} \approx 0.75$	v_2	0.2 - 0.80% - 0.30%	Au+Au 200 GeV - 30-80%	
L. W. Chen et al., Phys. Rev. C 73, 044903 (2006).	C. Lang et al., arXiv:1312.7763 [nucl-th] (2013)	$ \begin{array}{c c} & & & & & & & & \\ \hline \end{array} & & & & & & & \\ \hline \end{array} & & & & & & & \\ \hline \end{array} & & & & & & & \\ \hline \end{array} & & & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & & & \\ \hline \end{array} & & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & \\ \hline \end{array} & \end{array} & \begin{array}{c} & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & & \\ \hline \end{array} & \begin{array}{c} & & & & \\ \end{array} & \end{array} & \end{array} \\ \end{array} $ \\ \end{array}		

3 3.5 4 4.5 5

\u+Au 200 Ge\

Track Selection and Particle Identification with the STAR TPC and TOF

v_n vs Invariant Mass Method

A. M. Poskanzer et al., Phys. Rev. C, 58 (1998).

 $R = \sqrt{\langle \cos[m(\Psi_n^{west} - \Psi_n^{east})] \rangle}$

Where m -> harmonic of interest n is the order of event plane

Event by event resolution correction

H.Masui et al., arXiv:1212.3650 [nucl-ex](2012)

- φ meson is reconstructed from K⁺ K⁻ decay channel
- Background: Event mixing
- φ signal is fitted with Breit-Wigner + 1st order polynomial

Summary

- We have presented $v_3(p_T)$ and $v_4(p_T)$ of ϕ meson in Au+Au collisions at √s_{NN}= 200 GeV
- No visible centrality dependence for $v_3(\psi_3)$ and $v_4(\psi_4)$ within statistical uncertainties
- v_3/v_2 ratio is constant for $p_T > 1.5$ GeV/c which is qualitatively consistent with hydro model prediction
- $v_4(\psi_4)/v_2^2$ is larger than ideal for central collisions but comparable in peripheral collisions

References

[1] J. Adams et al. (STAR Collaboration), Nucl. Phys. A 757, 102 (2005).

- [2] L. W. Chen et al. Phys. Rev. C 73, 044903 (2006).
- [3] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 88, 014904 (2013).
- [4] C. Lang et al. arXiv:1312.7763 [nucl-th] (2013).

